-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathnem.py
220 lines (203 loc) · 11.4 KB
/
nem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
'''
Train and test Neural Event Model (NEM). This module also comes with a main function that acts as a CLI for NEM.
'''
# pylint: disable=wrong-import-position
import sys
import argparse
import pickle
import os
import numpy
numpy.random.seed(21957)
from keras.models import Model, load_model
from keras.layers import Input, Dense, Dropout, Embedding, LSTM
from metrics import precision, recall, f1_score
from keras_extensions import AnyShapeEmbedding, TimeDistributedRNN, MaskedFlatten
from read_data import DataProcessor
NUM_EPOCHS = 50
PATIENCE = 5
class NEM:
'''
Neural Event Model
'''
def __init__(self, use_event_structure=True, embedding_dim=50):
self.use_event_structure = use_event_structure
self.embedding_dim = embedding_dim
self.data_processor = DataProcessor()
self.model = None
model_type = "structured" if use_event_structure else "flat"
if not os.path.exists("saved_models"):
os.makedirs("saved_models")
self.model_prefix = "saved_models/nem_%s_dim=%d" % (model_type, embedding_dim)
# Custom metrics
self.custom_objects = {"precision": precision, "recall": recall, "f1_score": f1_score}
if use_event_structure:
# Custom layers
self.custom_objects.update({"AnyShapeEmbedding": AnyShapeEmbedding,
"MaskedFlatten": MaskedFlatten,
"TimeDistributedRNN": TimeDistributedRNN})
def train_nem(self, inputs, labels, pretrained_embedding_file=None, tune_embedding=False):
'''
Train NEM. Depending on whether `use_event_structure` is set in the initializer, the model
uses either the semantic role structure or just the sentences.
'''
pretrained_embedding = None
if pretrained_embedding_file is not None:
pretrained_embedding = self.data_processor.get_embedding(pretrained_embedding_file)
if self.use_event_structure:
model = self._build_structured_model(inputs, pretrained_embedding, tune_embedding)
else:
model = self._build_flat_model(inputs, pretrained_embedding, tune_embedding)
model.summary()
model.compile("adam", "categorical_crossentropy", metrics=["accuracy", precision,
recall, f1_score])
self.model = model
best_accuracy = 0.0
best_epoch = 0
num_worse_epochs = 0
for i in range(NUM_EPOCHS):
print("Epoch %d" % i, file=sys.stdout)
history = self.model.fit(inputs, labels, epochs=1, validation_split=0.1)
validation_accuracy = history.history['val_acc'][0]
if validation_accuracy > best_accuracy:
self._save_model(i)
best_epoch = i
num_worse_epochs = 0
best_accuracy = validation_accuracy
elif validation_accuracy < best_accuracy:
num_worse_epochs += 1
if num_worse_epochs >= PATIENCE:
print("Ran out of patience. Stopping training.", file=sys.stdout)
break
self._save_model_as_best(best_epoch)
def test_nem(self, inputs, labels, output_filename=None):
'''
Evaluate NEM on unseen data.
'''
metric_values = self.model.evaluate(inputs, labels)
for metric_name, metric_value in zip(self.model.metrics_names, metric_values):
print("%s: %.4f" % (metric_name, metric_value))
if output_filename is not None:
predictions = self.model.predict(inputs)
predicted_classes = numpy.argmax(predictions, axis=-1)
output_file = open(output_filename, "w")
for pred_class in predicted_classes:
print(pred_class, file=output_file)
def _build_structured_model(self, inputs, pretrained_embedding=None, tune_embedding=False) -> Model:
# pylint: disable=too-many-locals
_, num_slots, num_words = inputs.shape
# (batch_size, num_slots, num_words)
if pretrained_embedding is None:
# Override tune_embedding if no pretrained embedding is given.
tune_embedding = True
input_layer = Input(shape=(num_slots, num_words), name="EventInput", dtype='int32')
embedding_weights = None if pretrained_embedding is None else [pretrained_embedding]
embedding = AnyShapeEmbedding(input_dim=self.data_processor.get_vocabulary_size(),
output_dim=self.embedding_dim, weights=embedding_weights,
mask_zero=True, trainable=tune_embedding, name="Embedding")
embedded_inputs = embedding(input_layer) # (batch_size, num_slots, num_words, embedding_dim)
embedded_inputs = Dropout(0.5)(embedded_inputs)
encoder = TimeDistributedRNN(LSTM(self.embedding_dim), name="ArgumentEncoder")
encoded_inputs = encoder(embedded_inputs) # (batch_size, num_slots, embedding_dim)
encoded_inputs = Dropout(0.2)(encoded_inputs)
# (batch_size, num_slots * embedding_dim)
concatenated_slots = MaskedFlatten(name="SlotConcatenator")(encoded_inputs)
# Note: We essentially have different projection weights for slots here.
event_composer = Dense(self.embedding_dim, activation='tanh', name="EventComposer")
# (batch_size, embedding_dim)
composed_event = event_composer(concatenated_slots)
# Assuming binary classification.
event_scorer = Dense(2, activation='softmax', name="EventScorer")
event_prediction = event_scorer(composed_event) # (batch_size, 2)
model = Model(inputs=input_layer, outputs=event_prediction)
return model
def _build_flat_model(self, inputs, pretrained_embedding=None, tune_embedding=False) -> Model:
# pylint: disable=too-many-locals
_, num_words = inputs.shape
if pretrained_embedding is None:
# Override tune_embedding if no pretrained embedding is given.
tune_embedding = True
input_layer = Input(shape=(num_words,), name="SentenceInput", dtype='int32')
embedding_weights = None if pretrained_embedding is None else [pretrained_embedding]
embedding = Embedding(input_dim=self.data_processor.get_vocabulary_size(), output_dim=self.embedding_dim,
weights=embedding_weights, mask_zero=True, trainable=tune_embedding,
name="Embedding")
embedded_inputs = embedding(input_layer) # (batch_size, num_words, embedding_dim)
embedded_inputs = Dropout(0.5)(embedded_inputs)
encoder = LSTM(self.embedding_dim, name="SentenceEncoder")
encoded_inputs = encoder(embedded_inputs) # (batch_size, embedding_dim)
encoded_inputs = Dropout(0.2)(encoded_inputs)
# Project encoding to make the depth of this variant comparable to that of the structured variant.
# (batch_size, embedding_dim)
projected_encoding = Dense(self.embedding_dim, activation="tanh", name="Projection")(encoded_inputs)
sentence_scorer = Dense(2, activation='softmax', name="SentenceScorer")
sentence_prediction = sentence_scorer(projected_encoding)
model = Model(inputs=input_layer, outputs=sentence_prediction)
return model
def make_inputs(self, filename: str, for_test=False, pad_info=None, include_sentences_in_events=False):
'''
Read in a file and use the data processor to make train or test inputs.
'''
add_new_words = not for_test
sentence_inputs, event_inputs, labels = self.data_processor.index_data(filename, add_new_words, pad_info,
include_sentences_in_events)
if self.use_event_structure:
return event_inputs, labels
else:
return sentence_inputs, labels
def _save_model(self, epoch: int):
model_file = "%s_%d.h5" % (self.model_prefix, epoch)
data_processor_file = "%s_dp.pkl" % self.model_prefix
self.model.save(model_file)
pickle.dump(self.data_processor, open(data_processor_file, "wb"))
def _save_model_as_best(self, epoch: int):
best_model_file = "%s_%d.h5" % (self.model_prefix, epoch)
new_name = "%s_best.h5" % self.model_prefix
os.rename(best_model_file, new_name)
def load_model(self, epoch: int=None):
'''
Load a pretrained model, optionally from a specific epoch. If no epoch is specified, the model that gave
the best validation accuracy will be loaded.
'''
data_processor_file = "%s_dp.pkl" % self.model_prefix
self.data_processor = pickle.load(open(data_processor_file, "rb"))
if epoch is None:
model_file = "%s_best.h5" % self.model_prefix
else:
model_file = "%s_%d.h5" % (self.model_prefix, epoch)
self.model = load_model(model_file, custom_objects=self.custom_objects)
def main():
'''
CLI for NEM
'''
argument_parser = argparse.ArgumentParser(description="CLI for training and testing Neural Event Model (NEM)")
argument_parser.add_argument("--train_file", type=str, help="Train file (JSON). Required for training.")
argument_parser.add_argument("--test_file", type=str, help="Test file (JSON). Required for testing.")
argument_parser.add_argument("--embedding_file", type=str, help="Gzipped embedding file.")
argument_parser.add_argument("--tune_embedding", help="Tune embedding if embedding file is provided.",
action='store_true')
argument_parser.add_argument("--wanted_args", type=str, nargs='+', help="Arguments to use in the event"
" structure")
argument_parser.add_argument("--ignore_structure", help="Encode sentences instead of events.",
action='store_true')
argument_parser.add_argument("--include_sentences_in_events", help="Make the whole sentence an additional"
" argument in the event structure.", action='store_true')
argument_parser.add_argument("--embedding_dim", type=int, help="Dimensionality of the whole network.",
default=50)
argument_parser.add_argument("--output_file", type=str, help="Output file name to print predictions.")
args = argument_parser.parse_args()
use_event_structure = not args.ignore_structure
nem = NEM(use_event_structure=use_event_structure, embedding_dim=args.embedding_dim)
if args.train_file is not None:
pad_info = {"wanted_args": args.wanted_args} if args.wanted_args is not None else {}
train_inputs, train_labels = nem.make_inputs(args.train_file, for_test=False, pad_info=pad_info,
include_sentences_in_events=args.include_sentences_in_events)
nem.train_nem(train_inputs, train_labels, args.embedding_file, args.tune_embedding)
if args.test_file is not None:
# Even if we trained NEM in this run, we should load the best model.
nem.load_model()
pad_info_after_train = nem.data_processor.get_pad_info()
test_inputs, test_labels = nem.make_inputs(args.test_file, for_test=True, pad_info=pad_info_after_train,
include_sentences_in_events=args.include_sentences_in_events)
nem.test_nem(test_inputs, test_labels, output_filename=args.output_file)
if __name__ == "__main__":
main()