-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMESDP.jl
276 lines (252 loc) · 7.02 KB
/
MESDP.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
include("Arnoldi/ArnoldiMethodMod.jl")
using .ArnoldiMethodMod
using LinearAlgebra
using Distributions
using Statistics
using SparseArrays
#==============================MISC=============================#
#Julia Display with endline
function disp(quan; name="")
if name != ""
print(name, ":\n")
end
display(quan)
print('\n')
end
#==========================BASIC=ALGORITHM======================#
#calculate gradient matrix n x
function grad(A; P=nothing, v=nothing)
r = spzeros(m, m)
for i in 1:n
if P !== nothing
a = A[:, i]
r = r - (a' * P' * a)^-0.5 / 2 * a * a'
elseif v !== nothing
a = A[:, i]
r = r - (a' * P' * a)^-0.5 / 2 * a * a'
else
println("grad error: No valid input")
end
end
return r
end
#Linear map
function B(A; P=nothing, v=nothing, d=nothing)
rows = rowvals(A)
vals = nonzeros(A)
r = spzeros(n)
#prioratise v
if P !== nothing && v !== nothing
P = nothing
end
for i in 1:n
if d !== nothing
for k in nzrange(A, i)
r[i] += vals[k]^2
end
r[i] = r[i] * d
elseif P !== nothing
a = A[:, i]
r[i] = a' * P' * a
elseif v !== nothing
for k in nzrange(A, i)
r[i] += (vals[k] * v[rows[k]])
end
r[i] = r[i]^2
else
println("B error: No valid input")
end
end
return r
end
#linear map 's gradient
function ∇g(v; lowerBound=0, upperBound=1e16, D=ones(1, n))
res = zeros(n)
for i in 1:n
res[i] = clamp(1 / (2 * ((v[i])^(1 / 2))), lowerBound / D[i], upperBound / D[i])
end
return res
end
#Adjoint linear map
function Badj(A, w)
r = spzeros(m, m)
for i in 1:n
a = A[:, i]
r = r + w[i] * a * a'
end
return r
end
#f = ∑√v
function f(v)
r = 0
for i in 1:n
r = r - sqrt(v[i])
end
return abs(r)
end
#Calculate true gradient
function LMOtrueGrad(A, v; lowerBound=0, upperBound=1e16)
∇P = spzeros(m, m)
for i in 1:n
a = A[:, i]
grad_ = 1 / (2 * sqrt(v[i]))
grad_ = clamp(grad_, lowerBound, upperBound)
∇P = ∇P - a * a' * grad_
end
(eig, eigv) = eigen(∇P)
w = eigv[:, 1]
w = w / norm(w)
q = B(A, v=w)
return w, q, eig[1]
end
#Frank Wolfe with true gradient
function solvesampTrue(A, v0; t0=2, ε=1e-3, lowerBound=0, upperBound=1e16)
v = v0
t = 0
start = t0
gamma = 2 / (t + start)
w, q, λ = LMOtrueGrad(A, v, lowerBound=lowerBound, upperBound=upperBound)
while dot(q - v, ∇g(v, lowerBound=lowerBound, upperBound=upperBound)) / abs(f(v)) > ε
t = t + 1
v = (1 - gamma) * v + gamma * q
gamma = 2 / (t + start)
w, q, λ = LMOtrueGrad(A, v, lowerBound=lowerBound, upperBound=upperBound)
end
result = (val=f(A), t=t)
return result
end
#LMO
function ArnoldiGrad(A, v; lowerBound=0, upperBound=1e16, tol=1e-2, D=ones(1, n), mode="A")
Mn = lowerBound ./ D
Mx = upperBound ./ D
λ = sqrt.(clamp.(1 ./ (2 .* sqrt.(v)), Mn, Mx))
if mode == "A"
decomp, history = partialschur(A, λ, tol=tol, which=LM(), mode=mode)
eig, eigv = partialeigen(decomp)
w = eigv[:, 1]
q = B(A, v=w)
return w, q, eig[1]
elseif mode == "C"
decomp, history = partialschur(A, λ, tol=tol, which=LM(), mode=mode)
eig, eigv = partialeigen(decomp)
u = real(eigv[:, 1])
tmp = zeros(n, 1)
tmp2 = zeros(n, 1)
tmp = λ .* u
tmp2 = A * tmp
tmp = λ .* tmp2
scale = (tmp'*u)[1]
tmp2 = tmp2 .^ 2
tmp2 /= scale
return u, tmp2, eig[1]
end
end
#linesearch
function gammaLineSearch(v, q; ε=1e-8)
b = 0
e = 1
while e - b > ε
#println(b, " ", e)
# Find the mid1 and mid2
mid1 = b + (e - b) / 3
mid2 = e - (e - b) / 3
vmid1 = (1 - mid1) * v + mid1 * q
vmid2 = (1 - mid2) * v + mid2 * q
#disp(vmid1)
#disp(vmid2)
if f(vmid1) < f(vmid2)
b = mid1
else
e = mid2
end
end
return (e + b) / 2
end
function CutValue(A, z)
rows = rowvals(A)
vals = nonzeros(A)
r = spzeros(n)
for i in 1:n
for k in nzrange(A, i)
r[i] += (vals[k] * z[rows[k]])
end
r[i] = sign(r[i])
end
return r' * A' * A * r / 2
end
function Solve(A, v0; D=ones((1, n)), t0=2, ε=1e-3, lowerBound=0, upperBound=1e16, plot=false, linesearch=false, numSample=1, mode="A", logfilename=nothing, startεd0=-3.0)
if logfilename !== nothing
open(logfilename, "w") do io
print()
end
end
v = v0
t = t0
z = rand(Normal(0, 1 / m), (numSample, m))
start = 0
if !linesearch
gamma = 2 / (t + start)
end
if plot
flog = zeros(0)
glog = zeros(0)
end
εd0 = startεd0
w, q, λ = ArnoldiGrad(A, v, lowerBound=lowerBound, upperBound=upperBound, D=D, mode=mode, tol=10^(εd0))
gap = dot(q - v, ∇g(v, lowerBound=lowerBound, upperBound=upperBound, D=D)) / abs(f(v))
while gap > ε
if plot
append!(flog, abs(f(v)))
append!(glog, gap)
end
if linesearch && t > 10
gamma = gammaLineSearch(v, q)
else
gamma = 2 / (t + start)
end
t = t + 1
v = (1 - gamma) * v + gamma * q
if !linesearch
gamma = 2 / (t + start)
end
w, q, λ = ArnoldiGrad(A, v, lowerBound=lowerBound, upperBound=upperBound, D=D, mode=mode, tol=10^(εd0))
gap = dot(q - v, ∇g(v, lowerBound=lowerBound, upperBound=upperBound, D=D)) / abs(f(v))
#println(t, " ", abs(f(v)), " ", gap)
if logfilename !== nothing
open(logfilename, "a") do io
println(io, gap)
end
end
if gap < 10^(εd0)
εd0 -= 1
println("Change accuracy to ", 10^(εd0))
end
end
if plot
append!(flog, abs(f(v)))
append!(glog, gap)
bestRes = 0
bestIdx = 0
for i in 1:numSample
cut = CutValue(A, z[i, :])
if cut > bestRes
bestRes = cut
bestIdx = i
end
end
result = (val=f(v), v=v, t=t, plot=flog, z=z[bestIdx, :], gap=glog)
return result
else
bestRes = 0
bestIdx = 0
for i in 1:numSample
cut = CutValue(A, z[i, :])
if cut > bestRes
bestRes = cut
bestIdx = i
end
end
result = (val=f(v), v=v, t=t, z=z[bestIdx, :])
return result
end
end