-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.sus
1041 lines (785 loc) · 17.5 KB
/
test.sus
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
module example_md {
interface example_md : int[4] factors,
int add_to ->
int product,
int total
reg int mul0 = factors[0] * factors[1]
reg int mul1 = factors[2] * factors[3]
reg product = mul0 * mul1
reg total = product + add_to
}
// (a*b) + c
module multiply_add {
interface multiply_add : int a, int b, int c -> int total
reg int tmp = a * b
total = tmp + c
}
module test_pow17 {
int a = pow17(2)
}
module pow17 {
interface pow17 : int i -> int o
int i2 = i * i
reg int i4 = i2 * i2
int i8 = i4 * i4
reg int i16 = i8 * i8
o = i16 * i
}
module fibonnaci {
interface fibonnaci : -> int num
state int cur = 1
state int prev = 0
num = cur + prev
prev = cur
cur = num
}
module blur2 {
interface blur2 : int data, bool first -> int blurred
state int prev
if !first {
blurred = data + prev
}
prev = data
gen int a
gen bool b = true
gen bool bb = false
if bb {
a = 5
} else {
a = 3
}
}
module Tree_Multiply {
interface Tree_Multiply : int[4] values -> int total
reg int a = values[0] * values[1]
reg int b = values[2] * values[3]
reg total = a * b
}
module Accumulator {
interface Accumulator : int term, bool done -> int total
state int tot
initial tot = 0
int new_tot = tot + term
if done {
reg total = new_tot
tot = 0
} else {
tot = new_tot
}
}
//timeline (a, true -> /) | (a, false -> /) .. (a, false -> r)* .. (a, true -> r)
module blur {
interface blur : int a, bool done -> int result
state bool working
initial working = false
state int prev
if working {
reg reg reg result = prev + a // Add a pipeline stage for shits and giggles
}
prev = a
working = !done
}
//timeline (X -> X) .. (/ -> X) .. (/ -> X) .. (/ -> X)
module Unpack4 {
interface Unpack4 : int[4] packed -> int out_stream
gen int INITIAL = 0
gen int A = 1
state int st
initial st = 0
state int[3] stored_packed
if st == INITIAL {
out_stream = packed[0]
stored_packed[0] = packed[1] // Shorthand notation is possible here "stored_packed[0:2] = packed[1:3]"
stored_packed[1] = packed[2]
stored_packed[2] = packed[3]
st = 1
} else if st == 1 {
out_stream = stored_packed[0]
st = 2
} else if st == 2 {
out_stream = stored_packed[1]
st = 3
} else if st == 3 {
out_stream = stored_packed[2]
st = INITIAL // Must restore initial conditions
//finish // packet is hereby finished.
}
}
module generative {
interface generative : int i -> int o, int o2
gen int x = 5
gen int[x] ys
//gen int[ys] zs
gen int[3] ps
gen int[x] a
a[2] = 5
a[1] = 2
a[0] = 10
gen int[3] xx = a
gen bool test = true
if test {i = 5}
o = a[i]
o2 = a[a[0]]
}
module add_indices_to_array {
interface add_indices_to_array : int[10] values -> int[10] added_values
for int i in 0..10 {
int t = values[i]
added_values[i] = t + i
}
}
module assignment_producer {
interface assignment_producer : -> int v'0, int o'0, bool j'0 }
module test_various_assignments {
state int[3] st
bool b
reg int a, st[2], reg reg b = assignment_producer()
}
//timeline (bs -> /, true) | (bs -> v, false)
module first_bit_idx_6 {
interface first_bit_idx_6 : bool[6] bits -> int first, bool all_zeros
if bits[0] {
first = 0
all_zeros = false
} else if bits[1] {
first = 1
all_zeros = false
} else if bits[2] {
first = 2
all_zeros = false
} else if bits[3] {
first = 3
all_zeros = false
} else if bits[4] {
first = 4
all_zeros = false
} else if bits[5] {
first = 5
all_zeros = false
} else {
all_zeros = true
}
/*first int i in 0..6 where bits[i] {
first = i
all_zeros = false
} else {
all_zeros = true
}*/
}
module multiply_add_with_latencies {
interface multiply_add_with_latencies : int a'0, int b'0, int c'0 -> int r'0
int tmp'1 = multiply(a, b)
reg r = tmp + c
}
module first_bit_idx_24 {
interface first_bit_idx_24 : bool[24] bits -> int first
int[4] offsets
bool[4] was_nonzeros
for int i in 0..4 {
bool[6] these_bits
for int j in 0..6 {
these_bits[j] = bits[i * 6 + j]
}
int offset, bool was_nonzero = first_bit_idx_6(these_bits)
offsets[i] = offset
was_nonzeros[i] = was_nonzero
}
}
module permute {
interface permute : bool[128] mbf, int selected_permutation -> bool[128] permuted_mbf
// cvt_to_double
permuted_mbf = mbf
}
//timeline (X, [false24], true -> /, false) | (X, vs, true -> X, true) .. (/, /, false -> X, true)*
module permute24 {
interface permute24 : bool[128] mbf, bool[24] valid_permutes, bool start -> bool[128] permuted_out, bool permuted_out_valid
state bool[128] stored_mbf
state bool[24] stored_valid_permutes = 000000000000000000000000
gen int aaaaa = 5
bool[24] permutes_to_keep
permutes_to_keep[0] = false
for int i in 1..24 {
permutes_to_keep[i] = permutes_to_keep[i-1] | stored_valid_permutes[i-1]
}
int current_permutation_idx = first_bit_idx_24(permutes_to_keep)
stored_valid_permutes = stored_valid_permutes & permutes_to_keep
permuted_out = permute(stored_mbf, current_permutation_idx)
aaaaa()
}
module test_single_wire {
interface test_single_wire : int a -> int o
o = a
}
module disjoint_ports {
interface disjoint_ports : int a, int b, int c -> int result
reg result = a + b
// don't touch c
}
module undeteriminable_input_latency {
interface undeteriminable_input_latency : int a, int b -> int x, int y
reg int a_d = a
int t = a_d + b
reg reg reg int a_dd = a
reg int t_d = t
x = t_d + a_dd
y = t
}
module specified_input_latency {
interface specified_input_latency : int a'0, int b'1 -> int x, int y
reg int a_d = a
int t = a_d + b
reg reg reg int a_dd = a
reg int t_d = t
x = t_d + a_dd
y = t
}
module determinable_input_latency {
interface determinable_input_latency : int a, int b -> int x, int y
reg int a_d = a
int t = a_d + b
reg reg int a_dd = a
reg int t_d = t
x = t_d + a_dd
y = t
}
// This module is a copy of ::undeteriminable_input_latency, but it doesn't have an error, because we just assume the latency of the inner nodes to be the earliest possible.
module determinable_because_no_input_output_ports {
interface determinable_because_no_input_output_ports : int a -> int x
reg int a_d = a
int t = a_d
reg reg reg int a_dd = a
reg int t_d = t
x = t_d + a_dd
}
// This module is a copy of ::undeteriminable_input_latency, but it doesn't have an error, because we just assume the latency of the inner nodes to be the earliest possible.
module conflicting_latency_declarations {
interface conflicting_latency_declarations : int a'0 -> int x'1
reg int nio = a
reg x = nio
}
module bad_cycle {
interface bad_cycle : int a -> int r
state int state_reg
initial state_reg = 0
r = state_reg
reg state_reg = state_reg + a
}
module module_taking_time {
interface module_taking_time : int i'0 -> int o'5
o = i
}
module matrix_vector_mul {
interface matrix_vector_mul :
int[30][20] mat, int[20] vec -> int[30] result
for int row in 0..30 {
int[20] row_products
for int col in 0..20 {
row_products[col] = mat[row][col] * vec[col]
}
result[row] = +row_products
}
}
module bad_cycle2 {
interface bad_cycle2 : int a -> int r
state int test
initial test = 0
test = module_taking_time(test+a)
r = test
}
module module_taking_a_lot_of_time {
interface module_taking_a_lot_of_time : int data_in'0 -> int data_out'200
data_out = data_in
}
/*extern*/ module offset_latency {
interface offset_latency : int i'0 -> int o'-5
}
module good_cycle {
interface good_cycle : int a -> int r
state int test
initial test = 0
int new_test = test + a
test = new_test
r = new_test
}
module input_only {
interface input_only : int i
state int loop
initial loop = 0
loop = loop + i
}
module multiple_inputs_only {
interface multiple_inputs_only : int i, int i2
state int loop
initial loop = 0
loop = loop + i + i2
}
module output_only {
interface output_only : -> int o
state int loop
initial loop = 0
loop = loop + 1
reg o = loop
}
module multiple_outputs_only {
interface multiple_outputs_only : -> int o, int o2
state int loop
initial loop = 0
loop = loop + 1
reg o = loop
reg reg o2 = loop
}
// Test submodule comment
module submodule {
interface submodule : int a, int b -> int r
r = a * b
}
// module doing nothing
module doNothing {}
/*
Multiline
comment
# Test Title
*/
module contains_submodule_submodule {
interface contains_submodule_submodule : int a, int b, int c -> int r
// Temp val
int tmp = submodule(a, b)
doNothing()
reg r = tmp + c
}
module xor {
interface xor : bool x1, bool x2 -> bool y
bool w1 = !x1
bool w2 = !x2
bool w3 = x1 & w2
bool w4 = x2 & w1
y = w3 | w4
}
module use_xor {
bool b = xor(true, false)
}
module fizz_buzz {
interface fizz_buzz : int v -> int fb
gen int FIZZ = 888
gen int BUZZ = 555
gen int FIZZ_BUZZ = 888555
bool fizz = v % 3 == 0
bool buzz = v % 5 == 0
if fizz & buzz {
fb = FIZZ_BUZZ
} else if fizz {
fb = FIZZ
} else if buzz {
fb = BUZZ
} else {
fb = v
}
}
module fizz_buzz_gen {
interface fizz_buzz_gen : int v -> int fb
gen int FIZZ = 888
gen int BUZZ = 555
gen int FIZZ_BUZZ = 888555
gen int TABLE_SIZE = 256
gen int[TABLE_SIZE] lut
for int i in 0..TABLE_SIZE {
gen bool fizz = i % 3 == 0
gen bool buzz = i % 5 == 0
gen int tbl_fb
if fizz & buzz {
tbl_fb = FIZZ_BUZZ
} else if fizz {
tbl_fb = FIZZ
} else if buzz {
tbl_fb = BUZZ
} else {
tbl_fb = i
}
lut[i] = tbl_fb
}
fb = lut[v]
}
module mbf_dual {
interface mbf_dual : bool[128] mbf -> bool[128] dual
for int i in 0..128 {
dual[i] = !mbf[127-i]
}
}
module monotonize_down {
interface monotonize_down : bool[16] mbf -> bool[16] mtDown
bool[16] mbf2
bool[16] mbf4
bool[16] mbf8
for int i in 0..16 {
if i % 2 == 0 {
mbf2[i] = mbf[i] | mbf[i+1]
} else {
mbf2[i] = mbf[i]
}
}
for int i in 0..16 {
if i % 4 < 2 {
mbf4[i] = mbf2[i] | mbf2[i+2]
} else {
mbf4[i] = mbf2[i]
}
}
for int i in 0..16 {
if i % 8 < 4 {
mbf8[i] = mbf4[i] | mbf4[i+4]
} else {
mbf8[i] = mbf4[i]
}
}
for int i in 0..16 {
if i % 16 < 8 {
mtDown[i] = mbf8[i] | mbf8[i+8]
} else {
mtDown[i] = mbf8[i]
}
}
}
module my_mod {
interface my_mod : int i -> bool a, bool b
a = i == 3
b = i == 5
}
module use_my_mod {
interface use_my_mod : -> bool either
bool x, bool y = my_mod(3)
either = x | y
}
// Main module documentation
module submodule_named_ports {
interface submodule_named_ports : int port_a, int port_b -> int port_c
port_c = port_a + port_b
}
module use_submodule_named_ports {
interface use_submodule_named_ports : int i -> int o
// Test submodule documentation
submodule_named_ports sm
o = sm(i, i)
sm.port_a = i
sm.port_b = i
o = sm.port_c
}
module contains_submodule_submodule {
interface contains_submodule_submodule : int a, int b, int c -> int r
// Temp val
int tmp = submodule(a, b)
doNothing()
reg r = tmp + c
}
module cross_bool {
interface in : bool i'0
interface out : -> bool o'0
o = true
}
module cross_int {
interface in : int i'0
interface out : -> int o'0
o = 1
}
module cross_memory {
interface in : bool[20][512] i'0
interface out : -> bool[20][512] o'0
o[0][0] = true
}
module offset_backwards {
interface offset_backwards : bool i'0 -> bool o'-5
o = true
}
module dual_port_mem {
state bool[20][512] mem
interface write : bool write, bool[20] wr_data, int wr_addr
interface read : bool read, int rd_addr -> bool[20] rd_data
if write {
mem[wr_addr] = wr_data
}
cross_memory cr_m
cr_m.i = mem
if read {
rd_data = cr_m.o[rd_addr]
}
}
module use_fifo {
interface use_fifo : -> int o
FIFO fiii
bool[20] data
bool valid, bool[20] data2 = fiii.pop(true)
//bool ready = fiii.push(valid, data2)
}
module test_separated_domain {
interface test_separated_domain : int main
int domain2
int domain3
int domain4
cross_int ci
ci.i = domain3
domain4 = ci.o
int domain5
int #(MIN: 0, MAX: 199) my_int
}
module no_port_module {}
module use_no_input_module {
no_port_module()
no_port_module no_port
int x = no_port()
}
module mod_with_unused_interface {
if false {
interface v : int a -> int b
}
}
module test_write_to_gen_var {
int a
gen int b
a = b
a = a
b = b
b = a
}
module use_bad_interface {
mod_with_unused_interface mm
mm.a
// ICE(not yet implemented: Type Unification Unknown Named(type_1)): mm.a = 5
}
/*
interface
action
query
trigger
*/
// TODO valid and index should be part of a separate 'interface'
module sequenceDownFrom {
//interface sequence : ->
interface start : bool start'0, int upTo'0
output bool ready'0
interface iter : -> bool valid, state int index
cross_bool start_cr
start_cr.i = start
cross_int upTo_cr
upTo_cr.i = upTo
cross_bool ready_cr
ready = ready_cr.o
valid = index != 0
ready_cr.i = !valid
if valid {
index = index - 1
}
if start_cr.o {
index = upTo_cr.o
}
}
module sumUpTo {
interface sumUpTo : bool start
sequenceDownFrom sdf
sdf.start(start, 20)
bool re = sdf.ready
bool iter_valid, int iter_index = sdf.iter()
if iter_valid {
int idx = iter_index
}
int beep
}
module test #(T, int MY_INPUT) {
interface test : ::int #(beep: 20 > 3, BEEP: int) ab
MY_INPUT = 3
input int beep
beep = 3
FIFO #(BITWIDTH: 4) badoop
}
module use_test {
test #(MY_INPUT: 3) test_mod
}
module tinyTestMod #(int beep) {
output int o = beep
}
module testTinyTestMod {
tinyTestMod #(beep: 3) a
tinyTestMod #(beep: 4) b
tinyTestMod #(beep: 3) c
}
module tree_add #(int WIDTH) {
input int[WIDTH] values
output int sum
if WIDTH == 1 {
sum = values[0]
} else {
gen int HALF_WIDTH = WIDTH / 2
tree_add #(WIDTH: HALF_WIDTH) left
tree_add #(WIDTH: HALF_WIDTH) right
for int i in 0..HALF_WIDTH {
left.values[i] = values[i]
right.values[i] = values[i+HALF_WIDTH]
}
if WIDTH % 2 == 0 {
reg sum = left.sum + right.sum
} else {
reg sum = left.sum + right.sum + values[WIDTH - 1]
}
}
}
module make_tree_add {
gen int SIZE = 255
int[SIZE] vs
for int i in 0..SIZE {
vs[i] = i
}
tree_add #(WIDTH: SIZE) tr
tr.values = vs
output int beep = tr.sum
}
module replicate #(T, int NUM_REPLS) {
input T data
output T[NUM_REPLS] result
for int i in 0..NUM_REPLS {
result[i] = data
}
}
module use_replicate {
//replicate #(NUM_REPLS: 50, NUM_REPLS: 30, T: type bool) a
replicate #(NUM_REPLS: 20, T: type int[30]) b
replicate c
int val = 3
c.data = val
int[30] out = c.result
}
module permute_t #(T, int SIZE, int[SIZE] SOURCES) {
interface permute : T[SIZE] d_in -> T[SIZE] d_out
for int i in 0..SIZE {
d_out[i] = d_in[SOURCES[i]]
}
}
module use_permute {
gen int[8] SOURCES
SOURCES[0] = 3
SOURCES[1] = 2
SOURCES[2] = 4
SOURCES[3] = 5
SOURCES[4] = 1
SOURCES[5] = 2
SOURCES[6] = 7
SOURCES[7] = 6
int[2] inArr
inArr[0] = 2387
inArr[1] = 786823
permute_t #(SIZE: 8, SOURCES, T: type int) permut
int[8] beep = permut.permute(SOURCES)
}
module instruction_decoder {
interface from : bool[32] instr
interface is_jump
interface is_load
interface is_arith
}
module run_instruction {
interface run_instruction : bool[32] instr
instruction_decoder decoder
decoder.from(instr)
if decoder.is_jump() : int target_addr {
// ...
}
if decoder.is_load() : int reg_to, int addr {
// ...
}
if decoder.is_arith() : int reg_a, int reg_b, Operator op {
// ...
}
}
// Test no main interface error
module no_main_interface {
//interface no_main_interface
}
module use_no_main_interface {
no_main_interface no_interface_named
int x = no_interface_named()
int y = no_main_interface()
}
module moduleWithBadDeclaration {
int[true] a
}
module moduleWithBadInterface {
interface moduleWithBadInterface : int[true] a
}
module useModuleWithBadInterface {
int[3] xyz
moduleWithBadInterface(xyz)
xyz[3] = true
}
const int SUM_UP #(int SIZE, int[SIZE] DATA) {
SUM_UP = 0
for I in 0..SIZE {
SUM_UP = SUM_UP + DATA[I]
}
}
__builtin__ const T dont_care #(T) {}
module m {
gen int[5] DATA
DATA[0] = 2
DATA[1] = 2
DATA[2] = 2
DATA[3] = 2
DATA[4] = 5
gen int X = SUM_UP #(SIZE: 4, DATA, BEEEP: 3)
int #(ABC) x
}
module xyz {
int[5] a
CrossDomain cr
cr.in = a
int[5] b = cr.out
}
module numbersToAddUp {
int[5] arr
arr[0] = 3
arr[1] = 3
arr[2] = 3
arr[3] = 3
arr[4] = 3
// Don't need to specify #(WIDTH: 5)!
TreeAdd adder
int total = adder(arr)
}
/// Test parametrized extern modules
// Expects a SV module of the form:
/*
```sv
module sized_int_add #(
parameter int LEFT_SIZE,
parameter int RIGHT_SIZE,
parameter int OUTPUT_SIZE
) (
input clk,
input[LEFT_SIZE-1:0] a,
input[RIGHT_SIZE-1:0] b,
// c is output 1 cycle after a and b are provided