forked from NVIDIA/nvbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththroughput.cu
60 lines (54 loc) · 2.3 KB
/
throughput.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/*
* Copyright 2021 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 with the LLVM exception
* (the "License"); you may not use this file except in compliance with
* the License.
*
* You may obtain a copy of the License at
*
* http://llvm.org/foundation/relicensing/LICENSE.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nvbench/nvbench.cuh>
// Grab some testing kernels from NVBench:
#include <nvbench/test_kernels.cuh>
// Thrust vectors simplify memory management:
#include <thrust/device_vector.h>
// `throughput_bench` copies a 64 MiB buffer of int32_t, and reports throughput
// in a variety of ways.
//
// Calling `state.add_element_count(num_elements)` with the number of input
// items will report the item throughput rate in elements-per-second.
//
// Calling `state.add_global_memory_reads<T>(num_elements)` and/or
// `state.add_global_memory_writes<T>(num_elements)` will report global device
// memory throughput as a percentage of the current device's peak global memory
// bandwidth, and also in bytes-per-second.
//
// All of these methods take an optional second `column_name` argument, which
// will add a new column to the output with the reported element count / buffer
// size and column name.
void throughput_bench(nvbench::state &state)
{
// Allocate input data:
const std::size_t num_values = 64 * 1024 * 1024 / sizeof(nvbench::int32_t);
thrust::device_vector<nvbench::int32_t> input(num_values);
thrust::device_vector<nvbench::int32_t> output(num_values);
// Provide throughput information:
state.add_element_count(num_values, "NumElements");
state.add_global_memory_reads<nvbench::int32_t>(num_values, "DataSize");
state.add_global_memory_writes<nvbench::int32_t>(num_values);
state.exec([&input, &output, num_values](nvbench::launch &launch) {
nvbench::copy_kernel<<<256, 256, 0, launch.get_stream()>>>(
thrust::raw_pointer_cast(input.data()),
thrust::raw_pointer_cast(output.data()),
num_values);
});
}
NVBENCH_BENCH(throughput_bench);