-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
190 lines (152 loc) · 6.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import click
from topnet import TopNet18
import wandb
import numpy as np
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import models
from torchvision import transforms
import pandas as pd
from pathlib import Path
import pickle
from tqdm import tqdm
from torch import optim
from torch.utils.tensorboard import SummaryWriter
from torchvision.datasets import CIFAR100
from torchvision.models import resnet
from torch import nn
from torch_ema import ExponentialMovingAverage
import os
# For logging purposes
os.environ['WANDB_API_KEY'] = "cdfc53ab5d45aa0defbb8880184c67ce39745b42"
class ImageNetLowRes(Dataset):
def __init__(self, root, split, transform=None):
super().__init__()
self.root = root
self.split = split
if transform is None:
transform = lambda x: x
self.transform = transform
self._load()
def _load(self):
with open(Path(self.root) / 'map.txt', 'r') as f:
remap = [int(x) for x in f.read().split('\n')]
if self.split == 'train':
Xs = []
ys = []
for i in range(1, 11):
name = Path(self.root) / f"train_data_batch_{i}"
with open(name, 'rb') as f:
d = pickle.load(f)
Xs.append(d['data'].reshape((-1, 3, 64, 64)).transpose((0, 2, 3, 1)))
ys.append(d['labels'])
self.X = np.concatenate(Xs, axis=0)
self.y = np.array([remap[x] for x in (np.concatenate(ys, axis=0) - 1)])
elif self.split == 'val':
name = Path(self.root) / f"val_data"
with open(name, 'rb') as f:
d = pickle.load(f)
self.X = d['data'].reshape((-1, 3, 64, 64)).transpose((0, 2, 3, 1))
self.y = np.array([remap[x - 1] for x in d['labels']])
def __getitem__(self, index):
return self.transform(self.X[index, ...]), self.y[index]
def __len__(self):
assert self.X.shape[0] == self.y.shape[0]
return self.X.shape[0]
@click.command
@click.option('--in_planes', default=8)
@click.option('--use_conv_ops', default=False)
@click.option('--use_maxpool', default=True)
@click.option('--use_resnet', default=False)
@click.option('--learning_rate', default="1e-3")
def main(**params):
wandb.init(project="topog", entity="pmin")
wandb.config = {
"version": "initial",
**params
}
print(params)
train_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(.2, .2, .2, .2),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
test_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
train_dataset = ImageNetLowRes('/home/pmin/hdd/imagenet64', 'train', transform=train_transform)
test_dataset = ImageNetLowRes('/home/pmin/hdd/imagenet64', 'val', transform=test_transform)
if params.get('use_resnet'):
net = resnet.resnet18()
else:
net = TopNet18(use_maxpool=params['use_maxpool'],
use_conv_ops=params['use_conv_ops'],
in_planes=params['in_planes'])
net = net.to(device='cuda')
writer = SummaryWriter()
if params['in_planes'] >= 32:
batch_size = 1024
else:
batch_size = 2048
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=2)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=2)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=float(params['learning_rate']))
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, factor=.3, patience=5)
ema = ExponentialMovingAverage(net.parameters(), decay=0.995)
epoch = 0
i = 0
running_loss = 0
for epoch in tqdm(range(100)):
j = 0
for X, y in train_loader:
net.train()
i += X.shape[0]
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(X.to(device='cuda'))
loss = criterion(outputs, y.to(device='cuda'))
loss.backward()
optimizer.step()
# print statistics
running_loss = loss.item()
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss:.3f}')
writer.add_scalar('loss/train', i, running_loss)
wandb.log({"train_loss": running_loss, "epoch": epoch, "batch": j})
running_loss = 0.0
j += 1
ema.update()
if epoch % 5 == 0:
with ema.average_parameters():
running_loss = 0
total_examples = 0
net.eval()
for X, y in test_loader:
with torch.no_grad():
outputs = net(X.to(device='cuda'))
loss = criterion(outputs, y.to(device='cuda'))
# print statistics
running_loss += loss.item() * X.shape[0]
total_examples += X.shape[0]
running_loss = running_loss / total_examples
print(f'[{epoch + 1}] val loss: {running_loss:.5f}')
writer.add_scalar('loss/val', i, running_loss)
wandb.log({"val_loss": running_loss, "epoch": epoch})
scheduler.step(running_loss)
if epoch % 5 == 4:
torch.save(net.state_dict(), f'/home/pmin/hdd/checkpoints/imagenet64_{params_to_str(params)}_{epoch}.pt')
wandb.finish()
def params_to_str(params):
return '_'.join([f"{str(k)}_{str(v)}" for k, v in params.items()])
if __name__ == '__main__':
#params = {'use_conv_ops': True,
# 'use_maxpool': True}
#params = {'use_resnet': True}
main()