This repository has been archived by the owner on Nov 26, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathFullMonte.py
878 lines (741 loc) · 43.3 KB
/
FullMonte.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
#!/usr/bin/python
# Standard Python Libraries #
import sys, os, random, math, time
import datetime as dt
import numpy as np
import logging
# Non-Standard Python Libraries #
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import ForceField
logger = logging.getLogger('FullMonte')
#logging.basicConfig(level=logging.DEBUG)
# The time elapsed between two specified Y/M/D 24H/M/S format #
def RealTime(time1, time2):
return (time2 - time1).seconds
#Pythagoras and Simple Trig #
def calcdist(atoma,atomb,coords):
a = np.array([coords[atoma][0], coords[atoma][1],coords[atoma][2]])
b = np.array([coords[atomb][0], coords[atomb][1],coords[atomb][2]])
return np.linalg.norm(numpy.array(a)-numpy.array(b))
#Angle between two vectors (degrees)#
def calcangle(atoma,atomb,atomc,coords):
u = np.array([coords[atoma][0]-coords[atomb][0], coords[atoma][1]-coords[atomb][1],coords[atoma][2]-coords[atomb][2]])
v = np.array([coords[atomc][0]-coords[atomb][0], coords[atomc][1]-coords[atomb][1],coords[atomc][2]-coords[atomb][2]])
c = np.dot(u,v)/np.linalg.norm(u)/np.linalg.norm(v)
return 180.0/math.pi * np.arccos(clip(c, -1, 1))
#Dihedral angle between two bonds (degrees) #
def calcdihedral(atoma,atomb,atomc,atomd,coords):
ab = np.array([coords[atomb][0]-coords[atoma][0], coords[atomb][1]-coords[atoma][1],coords[atomb][2]-coords[atoma][2]])
bc = np.array([coords[atomc][0]-coords[atomb][0], coords[atomc][1]-coords[atomb][1],coords[atomc][2]-coords[atomb][2]])
cd = np.array([coords[atomd][0]-coords[atomc][0], coords[atomd][1]-coords[atomc][1],coords[atomd][2]-coords[atomc][2]])
vec1 = np.cross(ab,bc)/np.linalg.norm(ab)/np.linalg.norm(bc)
vec2 = np.cross(bc,cd)/np.linalg.norm(bc)/np.linalg.norm(cd)
torsion=180.0/math.pi*np.arccos(np.dot(vec1,vec2)/np.linalg.norm(vec1)/np.linalg.norm(vec2))
sign=180.0/math.pi*np.arccos(np.dot(vec1,ab)/np.linalg.norm(vec1)/np.linalg.norm(ab))
if sign<90.0: torsion=torsion*-1.0
return torsion
# Returns a matrix of dihedral angles (with sign) given connecitivty and coordinates in numerical order. Only between heavy atoms and NH,OH and SH protons
# to be removed when checkSame is revised
def getTorsion(MolSpec):
torval=[]
for atoma in range(0,len(MolSpec.CARTESIANS)):
for partner1 in MolSpec.CONNECTIVITY[atoma]:
atomb = int(partner1.split("__")[0])-1
for partner2 in MolSpec.CONNECTIVITY[atomb]:
atomc = int(partner2.split("__")[0])-1
if atomc!=atoma:
for partner3 in MolSpec.CONNECTIVITY[atomc]:
atomd = int(partner3.split("__")[0])-1
if atomd>atoma and atomd!=atomb:
if MolSpec.ATOMTYPES[atoma]=="H" and MolSpec.ATOMTYPES[atomb]=="C": ignore=1
elif MolSpec.ATOMTYPES[atomd]=="H" and MolSpec.ATOMTYPES[atomc]=="C": ignore=1
else:
endA=""
endD=""
for endAatom in MolSpec.CONNECTIVITY[atomb]:
if (int(endAatom.split("__")[0])-1)!=atomc:
endA = endA+MolSpec.ATOMTYPES[int(endAatom.split("__")[0])-1]
for endDatom in MolSpec.CONNECTIVITY[atomc]:
if (int(endDatom.split("__")[0])-1)!=atomb:endD = endD+MolSpec.ATOMTYPES[int(endDatom.split("__")[0])-1]
if endA!="HHH" and endD!="HHH":
torsion=calcdihedral(atoma,atomb,atomc,atomd,MolSpec.CARTESIANS)
torval.append(torsion)
return torval
# Filter post optimization - checks whether two conformers are identical on the basis of non-bonded distances and energy. Considers equivalent coordinate descriptions
def checkSame(torval1, CSearch, SearchParams, savedconf):
tordiff=0.0; besttordiff=180.0; sameval=0
if len(SearchParams.EQUI)==0:
for x in range(0,len(torval1)):
difftor=math.sqrt((torval1[x]-CSearch.TORVAL[savedconf][x])*(torval1[x]-CSearch.TORVAL[savedconf][x]))
if difftor>180.0:
difftor=360.0-difftor
tordiff=tordiff + difftor*difftor
if len(torval1)!=0:
besttordiff=math.sqrt(tordiff/len(torval1))
else:
tempcart=[]
for i in range(0,len(ConfSpec.CARTESIANS)): tempcart.append(ConfSpec.CARTESIANS[i])
allposscoords=[tempcart]
#print len(allposscoords)
#print SearchParams.EQUI
equilist=[]
for i in range(0,len(SearchParams.EQUI)): equilist.append(SearchParams.EQUI[i])
for equivcoords in equilist:
equivstring=equivcoords.split(" ")
if len(equivstring)==3:
equilist.append(equivstring[0]+" "+equivstring[1])
equilist.append(equivstring[0]+" "+equivstring[2])
equilist.append(equivstring[1]+" "+equivstring[2])
#print equilist
for equivcoords in equilist:
#print equivcoords
equivstring=equivcoords.split(" ")
nequiv=len(equivstring)
if nequiv == 2:
equivloop=[]
for item in equivstring:
equivloop.append(int(item)-1)
for item in equivstring:
equivloop.append(int(item)-1)
for l in range(0,len(allposscoords)):
for i in range(1, nequiv):
orig=[]
swap=[]
for j in range(0,nequiv):
orig.append(equivloop[j])
swap.append(equivloop[i+j])
swappedcoords=[0]*len(ConfSpec.CARTESIANS)
for j in range(0,len(ConfSpec.CARTESIANS)):
swappedcoords[j]=allposscoords[l][j]
for k in range(0,nequiv):
if j == orig[k]:
#print "Interchanging coordinates",j, swap[k]
swappedcoords[j]=allposscoords[l][swap[k]]
#print swappedcoords[j]
#PossSpec = ConfSpec
#PossSpec.CARTESIANS = swappedcoords
#torval1=getTorsion(PossSpec)
#print torval1
allposscoords.append(swappedcoords)
#print "appending"
#print swappedcoords
#print len(allposscoords)
originaltorval=getTorsion(ConfSpec)
originalsum = 0.0
alteredsum = 0.0
for x in range(0,len(originaltorval)):
originalsum = originalsum + math.pow(originaltorval[x],2.0)
for poss in allposscoords:
#print "poss"
#for i in range(0,len(poss)):
# print ConfSpec.ATOMTYPES[i], poss[i][0], poss[i][1], poss[i][2]
PossSpec = ConfSpec
PossSpec.CARTESIANS = poss
torval1=getTorsion(PossSpec)
tordiff=0.0
alteredsum = 0.0
for y in range(0,len(torval1)):
alteredsum = alteredsum + math.pow(torval1[y],2.0)
if math.pow((originalsum-alteredsum),2.0) < 0.1:
#print originalsum, alteredsum
#print "comparing torsions"
for z in range(0,len(torval1)):
#print savedconf, "-", x, torval1[x], CSearch.TORVAL[savedconf][x]
difftor=math.sqrt((torval1[z]-CSearch.TORVAL[savedconf][z])*(torval1[z]-CSearch.TORVAL[savedconf][z]))
if difftor>180.0:
difftor=360.0-difftor
tordiff=tordiff + difftor*difftor
#print torval1[z], CSearch.TORVAL[savedconf][z], difftor
if len(torval1)!=0:
tordiff=math.sqrt(tordiff/len(torval1))
#print tordiff
if tordiff<besttordiff:
besttordiff=tordiff
#this is a horrible hack which returns the cartesians back to before equivalent coordinate systems were considered....
ConfSpec.CARTESIANS = tempcart
if besttordiff<SearchParams.COMP: sameval=sameval+1
return sameval
# Looks for rotatable single bonds. Requires connectivity information. Uninteresting torsions (e.g. methyl groups) are excluded
class Assign_Variables:
def __init__(self, MolSpec, PARAMS,log):
self.MOLATOMS = [range(0,MolSpec.NATOMS)]
self.NMOLS = 1
# Find rotatable bonds
self.ETOZ = []
#if len(PARAMS.ETOZ) > 0:
# self.ETOZ.append([int(Params.ETOZ[0].split()[0]), int(Params.ETOZ[0].split()[1])])
self.TORSION = []; ring = []
for i in range(0, MolSpec.NATOMS):
for partner in MolSpec.CONNECTIVITY[i]:
nextatom = int(partner.split("__")[0])-1
bondorder = (partner.split("__")[1])
if nextatom>i: # Avoid duplication
fixed=0
for fix in PARAMS.FIXT:
fixA=int(fix.split(" ")[0])
fixB=int(fix.split(" ")[1])
if fixA == i+1 and fixB == nextatom+1: fixed=fixed+1
if fixB == i+1 and fixA == nextatom+1: fixed=fixed+1
# Must be single bonds not specified as fixed
if bondorder == "SINGLE" and fixed == 0:
terminal = 0
CX3 = 0
nextCX3 = 0
for member in [i, nextatom]:
nextatomstring = ""
nextnextatomstring = ""
nextnumh = 0
templist1 = []
#print member, MolSpec.CONNECTIVITY[member]
# Each atom must have other atoms attached
if len(MolSpec.CONNECTIVITY[member])>1:
terminal = terminal + 1
for nextpartner in MolSpec.CONNECTIVITY[member]:
for z in range(0,len(nextpartner.split("__"))/2):
nextnextatom = int(nextpartner.split("__")[2*z])-1
if nextnextatom != i and nextnextatom != nextatom:
nextatomstring=nextatomstring+MolSpec.ATOMTYPES[nextnextatom]
templist1.append(nextnextatom)
for nextnextpartner in MolSpec.CONNECTIVITY[nextnextatom]:
for v in range(0,len(nextnextpartner.split("__"))/2):
nextnextnextatom = int(nextnextpartner.split("__")[2*v])-1
if nextnextnextatom!=member:
nextnextatomstring=nextnextatomstring+MolSpec.ATOMTYPES[nextnextnextatom]
#Checks if either of two connected atoms are CX3 groups
if nextatomstring.find("HHH") > -1 or nextatomstring.find("FFF") > -1 or nextatomstring.find("ClClCl") >- 1 or nextatomstring.find("III")>-1: CX3 = CX3 + 1
#Checks if either of two connected atoms are bonded to three identical CX3 or NX3 or PX3 or SiX3 groups
if nextatomstring.find("CCC")>-1 or nextatomstring.find("NNN")>-1 or nextatomstring.find("PPP")>-1 or nextatomstring.find("SiSiSi")>-1:
if nextnextatomstring.find("HHHHHHHHH")>-1 or nextnextatomstring.find("FFFFFFFFF")>-1 or nextnextatomstring.find("ClClClClClClClClCl")>-1 or nextnextatomstring.find("IIIIIIIII")>-1: nextCX3=nextCX3+1
# Given the above criteria are satisfied, we also need to make sure the torsion isn't part of a ring, as they must be dealt with differently
if CX3 == 0 and nextCX3 == 0 and terminal == 2:
count = 1
mem = 0
currentatom=[[i],[nextatom]]
nextlot=[]
while count<1000 and mem==0:
nextlot=[]
for onecurrentatom in currentatom[count]:
for partners in MolSpec.CONNECTIVITY[onecurrentatom]:
inf = partners.split("__")
for n in range(0,len(inf)/2):
noback=0
for onepreviousatom in currentatom[count-1]:
if (int(inf[2*n])-1) == onepreviousatom: noback = noback + 1
if (int(inf[2*n])-1) == nextatom: noback = noback + 1
if noback == 0:
if (int(inf[2*n])-1) == i: mem = count+1
nextlot.append(int(inf[2*n])-1)
count=count+1
currentatom.append(nextlot)
if mem == 0: self.TORSION.append([i,nextatom])
self.MCNV = len(self.TORSION)
#A random number of changes are made to generate each new structure. Chang, Guida and Still found between 2 and ntors-1 to work well
self.MCNVmin = 2
self.MCNVmax = self.MCNV - 1
#However if there is only one or two rotatable bonds, adjust the upper limit to ntors
if self.MCNVmin > self.MCNV: self.MCNVmin = self.MCNV
if self.MCNVmax < self.MCNVmin: self.MCNVmax = self.MCNVmin
#If there is nothing to vary then exit
if self.MCNV == 0 and self.MCRI == 0 and self.NMOLS == 1:
logger.error("\nFATAL ERROR: Found zero rotatable torsions and only one molecule in %s \n", MolSpec.NAME)
sys.exit()
#Rotates specified single bond through a specified angle, returning the modified coordinates
def AtomRot(MolSpec, torsion, geometry):
atomA = geometry[torsion[0]-1]
atomB = geometry[torsion[1]-1]
theta = float(torsion[2])/180.0*math.pi
cyclic = 0
newcoord=[]
if cyclic == 0:
vectorAB = [float(atomB[0])-float(atomA[0]),float(atomB[1])-float(atomA[1]),float(atomB[2])-float(atomA[2])]
distAB = math.sqrt(vectorAB[0]*vectorAB[0]+vectorAB[1]*vectorAB[1]+vectorAB[2]*vectorAB[2])
unitAB = [vectorAB[0]/distAB,vectorAB[1]/distAB,vectorAB[2]/distAB]
count = 1
stop=0
currentatom=[]
nextlot=[]
currentatom.append([torsion[0]-1])
currentatom.append([torsion[1]-1])
while count<100 and stop==0:
nextlot=[]
for onecurrentatom in currentatom[count]:
for partners in MolSpec.CONNECTIVITY[onecurrentatom]:
inf = partners.split("__")
for n in range(0,len(inf)/2):
noback=0
for onepreviousatom in currentatom[count-1]:
if (int(inf[2*n])-1)==onepreviousatom: noback=noback+1
for onepreviousatom in currentatom[count]:
if (int(inf[2*n])-1)==onepreviousatom: noback=noback+1
if noback==0: nextlot.append(int(inf[2*n])-1)
count=count+1
#print count
if len(nextlot) == 0:stop=stop+1
currentatom.append(nextlot)
#print "current atom", currentatom
for i in range(0,len(geometry)):
#print i,geometry[i]
newcoord.append(geometry[i])
for i in range(2,len(currentatom)-1):
for atom in currentatom[i]:
#print "Rotating", (atom+1), "about", torsion[0]
dotproduct = unitAB[0]*(float(geometry[atom][0]) - float(atomA[0])) + unitAB[1]*(float(geometry[atom][1]) - float(atomA[1])) + unitAB[2]*(float(geometry[atom][2]) - float(atomA[2]))
centre = [float(atomA[0]) + dotproduct*unitAB[0], float(atomA[1]) + dotproduct*unitAB[1], float(atomA[2]) + dotproduct*unitAB[2]]
v = [float(geometry[atom][0]) - centre[0], float(geometry[atom][1]) - centre[1], float(geometry[atom][2]) - centre[2]]
d = math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])
px = v[0]*math.cos(theta) + v[1]*math.sin(theta)*unitAB[2] - v[2]*math.sin(theta)*unitAB[1]
py = v[1]*math.cos(theta) + v[2]*math.sin(theta)*unitAB[0] - v[0]*math.sin(theta)*unitAB[2]
pz = v[2]*math.cos(theta) + v[0]*math.sin(theta)*unitAB[1] - v[1]*math.sin(theta)*unitAB[0]
newv = [px + centre[0], py + centre[1], pz + centre[2]]
newdist = math.sqrt(px*px + py*py + pz*pz)
newcoord[int(atom)]=newv
if len(newcoord) !=0 : return newcoord
else:
logger.warning("didn't do anything!!!")
for i in range(0,len(geometry)): newcoord.append([0.0,0.0,0.0])
return newcoord
class OrderConfs:
def __init__(self, CSEARCH, PARAMS, start, log):
#Order the low energy conformers by energy
self.CARTESIANS = []
self.NAME = []
self.TIMESFOUND = []
self.USED = []
self.TORVAL =[]
self.MATCHEDALREADY = []
for j in range(0, CSEARCH.NSAVED): self.MATCHEDALREADY.append(0)
self.ENERGY = sorted(CSEARCH.ENERGY)
for j in range(0, CSEARCH.NSAVED):
for i in range(0, CSEARCH.NSAVED):
if CSEARCH.ENERGY[i] == self.ENERGY[j] and self.MATCHEDALREADY[i] == 0:
match = i
self.MATCHEDALREADY[match] = 1
self.CARTESIANS.append(CSEARCH.CARTESIANS[match])
self.NAME.append(CSEARCH.NAME[match])
self.TIMESFOUND.append(CSEARCH.TIMESFOUND[match])
self.USED.append(CSEARCH.USED[match])
self.TORVAL.append(CSEARCH.TORVAL[match])
CSEARCH.CARTESIANS = self.CARTESIANS
CSEARCH.NAME = self.NAME
CSEARCH.ENERGY = self.ENERGY
CSEARCH.TIMESFOUND = self.TIMESFOUND
CSEARCH.USED = self.USED
CSEARCH.TORVAL = self.TORVAL
class AddConformer:
def __init__(self, CSEARCH, CONFSPEC):
CSEARCH.NAME.append(CONFSPEC.NAME)
CSEARCH.ENERGY.append(CONFSPEC.ENERGY)
CSEARCH.CARTESIANS.append(CONFSPEC.CARTESIANS)
CSEARCH.CONNECTIVITY.append(CONFSPEC.CONNECTIVITY)
CSEARCH.TIMESFOUND.append(1)
CSEARCH.USED.append(0)
CSEARCH.TORVAL.append(getTorsion(CONFSPEC))
CSEARCH.NSAVED = CSEARCH.NSAVED + 1
class RemoveConformer:
def __init__(self, CSEARCH, todel):
j=0
for i in range(0,len(CSEARCH.NAME)):
logger.debug(CSEARCH.NAME[i])
logger.debug(CSEARCH.ENERGY[i])
#print todel, len(todel),
cutoff = (len(CSEARCH.NAME)-len(todel))
#print cutoff
newtodel=[]
for i in range(len(todel)-1, -1, -1): newtodel.append(todel[i])
for i in range(0,len(todel)):
#print i, todel[i], CSEARCH.TIMESFOUND[todel[i]]
CSEARCH.NREJECT = CSEARCH.NREJECT + CSEARCH.TIMESFOUND[todel[i]]
del CSEARCH.NAME[cutoff:]
del CSEARCH.ENERGY[cutoff:]
del CSEARCH.CARTESIANS[cutoff:]
del CSEARCH.CONNECTIVITY[cutoff:]
del CSEARCH.USED[cutoff:]
del CSEARCH.TIMESFOUND[cutoff:]
del CSEARCH.TORVAL[cutoff:]
logger.debug("AFTER REMOVAL")
for i in range(0,len(CSEARCH.NAME)):
logger.debug(CSEARCH.NAME[i])
logger.debug(CSEARCH.ENERGY[i])
CSEARCH.NSAVED = len(CSEARCH.NAME)
# Formatted output to command line and log file #
class FMLog:
# Designated initializer
def __init__(self,filein,suffix,append):
# Create the log file at the input path
self.log = open(filein+"_"+append+"."+suffix, 'w' )
# Write a message to the log
def Write(self, message):
# Print the message
logger.info(message)
# Write to log
self.log.write(message + "\n")
# Write a message only to the log and not to the terminal
def Writeonlyfile(self, message):
# Write to log
self.log.write(message)
# Write a fatal error, finalize and terminate the program
def Fatal(self, message):
# Print the message
logger.error(message+"\n")
# Write to log
self.log.write(message + "\n")
# Finalize the log
self.Finalize()
# End the program
sys.exit(1)
# Finalize the log file
def Finalize(self):
self.log.close()
class Writeintro:
# Formatted text printed to terminal and log file at the beginning of a new search
def __init__(self, MolSpec, Params, Variables, time, log):
strucname = MolSpec.NAME.split("_step_0")[0]
torstring=""
for torsion in Variables.TORSION: torstring = torstring+"{"+str(MolSpec.ATOMTYPES[torsion[0]])+str(torsion[0]+1)+"-"+str(MolSpec.ATOMTYPES[torsion[1]])+str((torsion[1]+1))+"} "
fixtstring=""
for fixed in Params.FIXEDATOMS: fixtstring = fixtstring+"{"+str(MolSpec.ATOMTYPES[fixed[0]-1])+str(fixed[0])+"-"+str(MolSpec.ATOMTYPES[fixed[1]-1])+str((fixed[1]))+"} "
molarray=[]
for mol in Variables.MOLATOMS:
molstring ="{ "
for atom in mol: molstring =molstring+str(MolSpec.ATOMTYPES[int(atom)])+str(int(atom)+1)+" "
molstring =molstring+"} "
molarray.append(molstring)
equistring=""
for equi in Params.EQUI:
equistring =equistring+"{ "
for atom in equi.split(" "): equistring = equistring+str(MolSpec.ATOMTYPES[int(atom)-1])+str(int(atom))+" "
equistring =equistring+"} "
log.Write(dashedline+"\n | "+("FULL_MONTE search on "+strucname).ljust(leftcol)+("|").rjust(rightcol))
log.Write(" | o "+("COMP: "+str(Params.COMP)+" degrees").ljust(leftcol)+("|").rjust(rightcol))
if len(Params.FIXT) > 0:
log.Write(" | o "+("FIXT: Manually constrained "+str(len(Params.FIXT))+" torsional variables").ljust(leftcol)+("|").rjust(rightcol)); log.Write(" | "+fixtstring.ljust(leftcol)+("|").rjust(rightcol))
if Variables.NMOLS > 1:
log.Write(" | o "+("Detected "+str(Variables.NMOLS)+" separate molecules - this adds additional search coordinates").ljust(leftcol)+("|").rjust(rightcol));
for i in range(0,len(molarray)):
chunks, chunk_size = len(molarray[i]), leftcol
for j in range(0, chunks, chunk_size):
log.Write(" | "+(molarray[i][j:j+chunk_size]).ljust(leftcol)+("|").rjust(rightcol))
log.Write(" | o "+("LEVL: "+str(Params.LEVL)+" force field").ljust(leftcol)+("|").rjust(rightcol))
log.Write(" | o "+("DEMX: "+str(Params.DEMX)+" kcal/mol").ljust(leftcol)+("|").rjust(rightcol))
if len(Params.EQUI) > 0:
log.Write(" | o "+("EQUI: The following sets of atoms are equivalent ").ljust(leftcol)+("|").rjust(rightcol))
log.Write(" | "+equistring.ljust(leftcol)+("|").rjust(rightcol))
log.Write(" | o "+("EWIN: "+str(Params.EWIN)+" kcal/mol").ljust(leftcol)+("|").rjust(rightcol))
log.Write(" | o "+("MCNV: "+str(Variables.MCNV)).ljust(leftcol)+("|").rjust(rightcol))
log.Write(" | "+torstring.ljust(leftcol)+("|").rjust(rightcol))
log.Write(" | o "+("STEP: "+str(Params.MAXSTEP)).ljust(leftcol)+("|").rjust(rightcol))
log.Write(dashedline+"\n")
class WriteSummary:
# Formatted text printed to terminal and log file at the end of each search step
def __init__(self, CSearch, SearchParams, start, log):
now = dt.datetime.now()
runningtime = RealTime(start, now)
if CSearch.COMPLETE == 0: log.Write("\no "+("STEP "+str(CSearch.STEP)+" COMPLETE: "+str(CSearch.NSAVED)+" unique conformations. Global minimum energy = "+str(round(CSearch.GLOBMIN,5))).ljust(leftcol)+("").rjust(rightcol))
if CSearch.COMPLETE == 1: log.Write("\no "+("FULL MONTE SEARCH COMPLETE: "+str(CSearch.NSAVED)+" unique conformations. Global minimum energy = "+str(round(CSearch.GLOBMIN,5))).ljust(leftcol)+("").rjust(rightcol))
log.Write(("\n Conformer Name Absolute Energy Erel (kcal/mol) Times found Times used ").ljust(leftcol)+"\n"+dashedline)
for i in range(0, CSearch.NSAVED):
absenergy = str(round(float(CSearch.ENERGY[i]),5))
if len(absenergy.split(".")[1])!=5: absenergy = absenergy+"0"
relenergy = str(round(float((CSearch.ENERGY[i]-CSearch.GLOBMIN)),2))
if len(relenergy.split(".")[1])!=2: relenergy = relenergy+"0"
log.Write(" "+os.path.split(CSearch.NAME[i])[1].ljust(30)+(absenergy).ljust(20)+(relenergy).rjust(10)+ (str(CSearch.TIMESFOUND[i])).rjust(15)+(str(CSearch.USED[i])).rjust(15)+("").rjust(2))
log.Write(dashedline+"\n o "+("Execute time: "+str(runningtime)+" seconds ").ljust(leftcol)+("").rjust(rightcol))
if CSearch.COMPLETE == 0: log.Write(" o "+("SE = "+str(round(float(CSearch.AERATE),1))+" DMIN = "+str(CSearch.DMIN)+" NOPT = "+str(CSearch.STEP)+" NFAIL = "+str(CSearch.NFAILED)).ljust(leftcol)+("").rjust(rightcol)+"\n"+ dashedline)
if CSearch.COMPLETE == 1: log.Write(" o "+("SE = "+str(round(float(CSearch.AERATE),1))+" DMIN = "+str(CSearch.DMIN)+" NOPT = "+str((CSearch.STEP-1))+" NFAIL = "+str(CSearch.NFAILED)).ljust(leftcol)+("").rjust(rightcol)+"\n"+ dashedline)
class SDFWriter:
"""
A class that acts like a file. If num_individual_files is positive, it also
creates an individual file for each conformation, incrementing a counter and opening
a new file until num_individual_files is reached. Call .next_conformation() to
move to a new file.
"""
def __init__(self, main_file_path, num_individual_files=0):
self.num_individual_files = num_individual_files
self.make_individual_files = num_individual_files > 0
self.individual_file = None
self.main_file_name = main_file_path
self.main_file = open(main_file_path, 'w')
_, self.extension = os.path.splitext(self.main_file_name)
if len(self.extension) == 0:
raise Exception('SDFWriter assumes filenames have an extension at the end.')
self.counter = 0
self.next_conformation()
def _get_individual_file(self):
if self.individual_file:
self.individual_file.close()
# insert _<num> just before the extension
new_file_name = self.main_file_name.replace(self.extension, '_%d%s' % (self.counter, self.extension))
return open(new_file_name, 'w')
def write(self, data):
self.main_file.write(data)
if self.make_individual_files:
self.individual_file.write(data)
def next_conformation(self):
self.counter += 1
if self.counter > self.num_individual_files:
self.make_individual_files = False
if self.make_individual_files:
self.individual_file = self._get_individual_file()
def close(self):
self.main_file.close()
if self.individual_file:
self.individual_file.close()
class makeSDFformat:
#Write a SDF file for viewing that contains the low energy conformations in ascending order of energy.
# Provide an integer to make_individual_files to additionally make that number of individual files, one per conformation.
def __init__(self, filein, MolSpec, CSearch,append, num_individual_files=0):
sdffile_name = filein+"_"+append+".sdf"
sdffile = SDFWriter(sdffile_name, num_individual_files)
if CSearch.NSAVED > 0:
for i in range(0, CSearch.NSAVED):
Erel = (CSearch.ENERGY[i]-CSearch.GLOBMIN)
sdffile.write(CSearch.NAME[i]+"\n")
sdffile.write(" E="+str(Erel)+"\n\n")
sdffile.write(str(MolSpec.NATOMS).rjust(3)+str(MolSpec.NBONDS).rjust(3)+" 0 0 0 0 0 0 0 0 0999 V2000")
for j in range(0, MolSpec.NATOMS):
x = "%.4f" % CSearch.CARTESIANS[i][j][0]
y = "%.4f" % CSearch.CARTESIANS[i][j][1]
z = "%.4f" % CSearch.CARTESIANS[i][j][2]
sdffile.write("\n"+x.rjust(10)+y.rjust(10)+z.rjust(10)+MolSpec.ATOMTYPES[j].rjust(2)+" 0 0 0 0 0 0 0 0 0 0 0 0")
for atomi in range(0,MolSpec.GetNumAtoms()):
for atomj in range(atomi,MolSpec.GetNumAtoms()):
if MolSpec.GetBondBetweenAtoms(atomi,atomj):
sdffile.write("\n"+str(atomi+1).rjust(3)+str(atomj+1).rjust(3)+str(int(MolSpec.GetBondBetweenAtoms(atomi,atomj).GetBondTypeAsDouble())).rjust(2)+" 0")
sdffile.write("\nM END\n$$$$ \n")
sdffile.next_conformation()
sdffile.close()
# Formatting
dashedline = " ------------------------------------------------------------------------------------------------------------------"
emptyline = " | |"
normaltermination = "\n ----------------- N O R M A L T E R M I N A T I O N ----------------\n"
leftcol=97
rightcol=12
asciiArt = " ___ ___ ___ ___ ___ ___ \n / /\\ /__/\\ /__/\\ / /\\ /__/\\ ___ / /\\\n / /:/_ \\ \\:\\ | |::\\ / /::\\ \\ \\:\\ / /\\ / /:/_\n / /:/ /\\ \\ \\:\\ ___ ___ ___ ___ | |:|:\\ / /:/\\:\\ \\ \\:\\ / /:/ / /:/ /\\\n / /:/ /:/___ \\ \\:\\ /__/\\ / /\\/__/\\ / /\\ __|__|:|\\:\\ / /:/ \\:\\ _____\\__\\:\\ / /:/ / /:/ /:/_\n/__/:/ /://__/\\ \\__\\:\\\\ \\:\\ / /:/\\ \\:\\ / /://__/::::| \\:\\/__/:/ \\__\\:\\/__/::::::::\\ / /::\\ /__/:/ /:/ /\\\n\\ \\:\\/:/ \\ \\:\\ / /:/ \\ \\:\\ /:/ \\ \\:\\ /:/ \\ \\:\\~~\\__\\/\\ \\:\\ / /:/\\ \\:\\~~\\~~\\//__/:/\\:\\\\ \\:\\/:/ /:/\n \\ \\::/ \\ \\:\\ /:/ \\ \\:\\/:/ \\ \\:\\/:/ \\ \\:\\ \\ \\:\\ /:/ \\ \\:\\ ~~~ \\__\\/ \\:\\\\ \\::/ /:/\n \\ \\:\\ \\ \\:\\/:/ \\ \\::/ \\ \\::/ \\ \\:\\ \\ \\:\\/:/ \\ \\:\\ \\ \\:\\\\ \\:\\/:/\n \\ \\:\\ \\ \\::/ \\__\\/ \\__\\/ \\ \\:\\ \\ \\::/ \\ \\:\\ \\__\\/ \\ \\::/\n \\__\\/ \\__\\/ \\__\\/ \\__\\/ \\__\\/ \\__\\/\n "
class PARAMS: pass
PARAMS.MAXSTEP = 0
PARAMS.LEVL = "UFF"
PARAMS.COMP = 10
PARAMS.FIXT = []
PARAMS.FIXEDATOMS = []
PARAMS.EQUI = []
PARAMS.EWIN=20.0
PARAMS.DEMX=41.84
# Define conformational search statistics
class CSEARCH: pass
# Names from Chang, Guida and Still's definitions
CSEARCH.NREJECT = 0
CSEARCH.NFAILED = 0
CSEARCH.AERATE = 0
CSEARCH.DMIN = 1
CSEARCH.STEP = 20
CSEARCH.NAME = []
CSEARCH.CARTESIANS = []
CSEARCH.CONNECTIVITY = []
CSEARCH.USED = [0]
CSEARCH.TIMESFOUND = [1]
CSEARCH.NSAVED = 1
CSEARCH.COMPLETE = 0
def main(filein, filetype, maxstep = None, levl = None, progress_callback = None, num_individual_files = 0):
if maxstep:
PARAMS.MAXSTEP = maxstep
if levl:
PARAMS.LEVL = levl
# Initialize the logfile for all text output #
if os.path.exists(filein+"_fm.dat"):
var = raw_input("\no Log file already exists! OK to overwrite this file ? (Y/N) ")
if var.lower() == "y" or var.lower() == "":
logger.warning(" Overwriting ...")
else:
logger.error("\nExiting\n")
sys.exit(1)
log = FMLog(filein,"dat", "fm")
# Open the structure file #
log.Write("\no Extracting structure from "+filein+"."+filetype+" ...")
if filetype == "mol": MOLSPEC = Chem.MolFromMolFile(filein+'.mol', removeHs=False)
MOLSPEC.NAME = filein
logger.debug(Chem.MolToMolBlock(MOLSPEC,confId=-1))
# Model Chemistry to be used
for level in ["UFF", "MMFF"]:
if PARAMS.LEVL.upper() == level: JOBTYPE = level
log.Write("\no Using "+JOBTYPE+" force field ... ")
# Perform an optimization of the starting geometry #
if JOBTYPE == "MMFF" or JOBTYPE == "UFF":
AllChem.EmbedMolecule(MOLSPEC)
if JOBTYPE == "UFF":
if AllChem.UFFHasAllMoleculeParams(MOLSPEC):
ff = AllChem.UFFGetMoleculeForceField(MOLSPEC)
AllChem.UFFOptimizeMolecule(MOLSPEC)
if JOBTYPE == "MMFF":
if AllChem.MMFFHasAllMoleculeParams(MOLSPEC):
ff = AllChem.MMFFGetMoleculeForceField(MOLSPEC,AllChem.MMFFGetMoleculeProperties(MOLSPEC))
AllChem.MMFFOptimizeMolecule(MOLSPEC)
MOLSPEC.ENERGY = ff.CalcEnergy()
else: log.Fatal("\nFATAL ERROR"%file)
logger.debug(Chem.MolToMolBlock(MOLSPEC,confId=-1))
MOLSPEC.ATOMTYPES = []
MOLSPEC.CONNECTIVITY = []
MOLSPEC.CARTESIANS = []
MOLSPEC.CHARGE = Chem.GetFormalCharge(MOLSPEC)
MOLSPEC.NATOMS = MOLSPEC.GetNumAtoms()
MOLSPEC.NBONDS = MOLSPEC.GetNumBonds()
for atom in MOLSPEC.GetAtoms(): MOLSPEC.ATOMTYPES.append(atom.GetSymbol())
for atom in range(0,MOLSPEC.NATOMS):
pos = MOLSPEC.GetConformer().GetAtomPosition(atom)
logger.debug("%s, %s, %s", pos.x, pos.y, pos.z)
MOLSPEC.CARTESIANS.append([pos.x, pos.y, pos.z])
for atomi in range(0,MOLSPEC.GetNumAtoms()):
MOLSPEC.CONNECTIVITY.append([])
for atomj in range(0,MOLSPEC.GetNumAtoms()):
if MOLSPEC.GetBondBetweenAtoms(atomi,atomj): MOLSPEC.CONNECTIVITY[atomi].append(str(atomj+1)+"__"+str(MOLSPEC.GetBondBetweenAtoms(atomi,atomj).GetBondType()))
#print Chem.FindMolChiralCenters(MOLSPEC,force=True,includeUnassigned=True)
# Assign variable torsions, number of separate molecules and ##
# If number of steps is not assigned use 3^rotatable torsions #
FMVAR = Assign_Variables(MOLSPEC, PARAMS, log)
if PARAMS.MAXSTEP == 0: PARAMS.MAXSTEP = int(math.pow(3,FMVAR.MCNV))
start = dt.datetime.now()
Writeintro(MOLSPEC, PARAMS, FMVAR, start, log)
CONFSPEC = MOLSPEC
CSEARCH.NAME.append(MOLSPEC.NAME)
CSEARCH.CARTESIANS.append(MOLSPEC.CARTESIANS)
CSEARCH.TORVAL = [getTorsion(MOLSPEC)]
CSEARCH.CONNECTIVITY.append(MOLSPEC.CONNECTIVITY)
CSEARCH.ENERGY = [MOLSPEC.ENERGY]
CSEARCH.GLOBMIN = MOLSPEC.ENERGY
CSEARCH.LASTFOUND = 0
CSEARCH.NSAVED = 1
CSEARCH.STEP = 0
# Stop once number of steps exceeded or no new conformers found
while CSEARCH.STEP < PARAMS.MAXSTEP:
# Setting the geometry that will be altered to generate new conformers
for i in range(0, CSEARCH.NSAVED):
if CSEARCH.ENERGY[i] - CSEARCH.GLOBMIN == 0.0: startgeom = i
# Generate new geometries
CONFSPEC.NAME = filein+"_step_"+str(CSEARCH.STEP)
for j in range(0, CSEARCH.NSAVED):
if (CSEARCH.ENERGY[j] - CSEARCH.GLOBMIN) < PARAMS.EWIN:
if CSEARCH.USED[j] < CSEARCH.USED[startgeom]: startgeom = j
if CSEARCH.USED[j] == CSEARCH.USED[startgeom] and CSEARCH.ENERGY[j] < CSEARCH.ENERGY[startgeom]: startgeom = j
CSEARCH.USED[startgeom] = CSEARCH.USED[startgeom] + 1
CONFSPEC.CARTESIANS = []
# The coordinates of the lowest energy, least used structure will be altered
log.Write("o STEP "+str(CSEARCH.STEP)+": Generating structure from "+ os.path.split(CSEARCH.NAME[startgeom])[1]+" ...")
for i in range (0,len(CSEARCH.CARTESIANS[startgeom])):
CONFSPEC.CARTESIANS.append([])
for cart in (CSEARCH.CARTESIANS[startgeom][i]): CONFSPEC.CARTESIANS[i].append(cart)
#logger.debug("Taking Cartesians")
#for cart in CONFSPEC.CARTESIANS: logger.debug(cart)
CONFSPEC.CONNECTIVITY = CSEARCH.CONNECTIVITY[startgeom]
CONFSPEC.ATOMTYPES = MOLSPEC.ATOMTYPES
if FMVAR.MCNVmin < FMVAR.MCNVmax: nrandom = random.randint(FMVAR.MCNVmin, FMVAR.MCNVmax)
else: nrandom = FMVAR.MCNVmax
if FMVAR.MCNV != 0:
FMVAR.ADJUST = []
for dihedral in random.sample(FMVAR.TORSION, nrandom):
FMVAR.ADJUST.append([int(dihedral[0])+1, int(dihedral[1])+1, random.randint(30,330)])
if len(FMVAR.ETOZ) > 0:
ezisomerize = random.choice([0,1])
for dihedral in random.sample(FMVAR.ETOZ,ezisomerize):
FMVAR.ADJUST.append([int(dihedral[0]), int(dihedral[1]), 180])
# Take input geometry and apply specified torsional changes
if hasattr(FMVAR, "ADJUST"):
#logger.debug(FMVAR.ADJUST)
for torsion in FMVAR.ADJUST: CONFSPEC.CARTESIANS = AtomRot(MOLSPEC, torsion, CONFSPEC.CARTESIANS)
#logger.debug(Chem.MolToMolBlock(CONFSPEC,confId=-1))
#logger.debug("After Rotation")
conf = Chem.Conformer(MOLSPEC.GetNumAtoms())
for atomi in range(0,MOLSPEC.GetNumAtoms()):
conf.SetAtomPosition(atomi,CONFSPEC.CARTESIANS[atomi])
#logger.debug("%s %s %s", conf.GetAtomPosition(atomi).x, conf.GetAtomPosition(atomi).y, conf.GetAtomPosition(atomi).z)
cid = CONFSPEC.AddConformer(conf,assignId=True)
#logger.debug("NCONF ="+str(CONFSPEC.GetNumConformers()))
#for nconf in range(0,CONFSPEC.GetNumConformers()):
# for atomi in range(0,CONFSPEC.GetNumAtoms()):
# print CONFSPEC.GetConformer(id=nconf-1).GetAtomPosition(atomi).x, CONFSPEC.GetConformer(id=nconf-1).GetAtomPosition(atomi).y, CONFSPEC.GetConformer(id=nconf-1).GetAtomPosition(atomi).z
# Perform an optimization
if JOBTYPE == "MMFF" or JOBTYPE == "UFF":
#AllChem.EmbedMolecule(CONFSPEC)
#logger.debug(Chem.MolToMolBlock(CONFSPEC,confId=cid))
if JOBTYPE == "UFF":
if AllChem.UFFHasAllMoleculeParams(CONFSPEC):
ff = AllChem.UFFGetMoleculeForceField(CONFSPEC,confId=cid)
AllChem.UFFOptimizeMolecule(CONFSPEC,confId=cid)
if JOBTYPE == "MMFF":
if AllChem.MMFFHasAllMoleculeParams(CONFSPEC):
ff = AllChem.MMFFGetMoleculeForceField(CONFSPEC,AllChem.MMFFGetMoleculeProperties(CONFSPEC),confId=cid)
AllChem.MMFFOptimizeMolecule(CONFSPEC,confId=cid)
CONFSPEC.ENERGY = ff.CalcEnergy()
else: log.Fatal("\nFATAL ERROR"%file)
CONFSPEC.CARTESIANS = []
for atom in range(0,MOLSPEC.NATOMS):
pos = CONFSPEC.GetConformer(cid).GetAtomPosition(atom)
CONFSPEC.CARTESIANS.append([pos.x, pos.y, pos.z])
#Check whether the molecule has high energy
if ((CONFSPEC.ENERGY-CSEARCH.GLOBMIN)) < PARAMS.DEMX:
samecheck = 0
torval1=getTorsion(CONFSPEC)
# also check whether a duplicate conformation has been found
for j in range(0, CSEARCH.NSAVED):
if CSEARCH.ENERGY[j] - CONFSPEC.ENERGY > 0.5: break
if abs(CONFSPEC.ENERGY - CSEARCH.ENERGY[j]) < 0.5:
if checkSame(torval1, CSEARCH, PARAMS, j) > 0:
log.Write(" "+( os.path.split(CONFSPEC.NAME)[1]+" is a duplicate of conformer "+ os.path.split(CSEARCH.NAME[j])[1]+" ... ").ljust(50))
CSEARCH.TIMESFOUND[j] = CSEARCH.TIMESFOUND[j] + 1
CSEARCH.NREJECT = CSEARCH.NREJECT + 1
samecheck = samecheck + 1
break
# Unique conformation with low energy! #
if samecheck == 0:
if CONFSPEC.ENERGY < CSEARCH.GLOBMIN:
CSEARCH.GLOBMIN = CONFSPEC.ENERGY
log.Write(" "+( os.path.split(CONFSPEC.NAME)[1]+" is a new Global Minimum!").ljust(80)+("E = "+str(CSEARCH.GLOBMIN)).rjust(rightcol))
else : log.Write(" "+(CONFSPEC.NAME+" is saved").ljust(80)+("E = "+str(CONFSPEC.ENERGY)).rjust(rightcol))
AddConformer(CSEARCH, CONFSPEC)
if (CONFSPEC.ENERGY-CSEARCH.GLOBMIN) < PARAMS.EWIN: CSEARCH.LASTFOUND = CSEARCH.STEP
# Rejection - discard #
else: log.Write(" "+(CONFSPEC.NAME+" is rejected due to high energy ... ").ljust(50)); CSEARCH.NREJECT = CSEARCH.NREJECT + 1
OrderConfs(CSEARCH, PARAMS, start, log)
# End of step - update the search statistics #
if (CSEARCH.STEP-CSEARCH.NFAILED) != 0: CSEARCH.AERATE = float(CSEARCH.STEP-CSEARCH.NREJECT-CSEARCH.NFAILED)/float(CSEARCH.STEP-CSEARCH.NFAILED)*100.0
else: CSEARCH.AERATE = 0.0
if len(CSEARCH.TIMESFOUND) > 0:
for dup in CSEARCH.TIMESFOUND:
if dup < CSEARCH.DMIN: CSEARCH.DMIN = dup
else: CSEARCH.DMIN = 0
#Tidy up the results - if the lowest energy has dropped then it may be necessary to remove some previously saved conformers
if CSEARCH.STEP % 100 == 0 and CSEARCH.STEP > 0:
todel=[]
for i in range(0,len(CSEARCH.NAME)):
if ((CSEARCH.ENERGY[i] - CSEARCH.GLOBMIN)) > PARAMS.DEMX or (i > 199): todel.append(i)
if len(todel) !=0: RemoveConformer(CSEARCH, todel)
WriteSummary(CSEARCH, PARAMS, start, log)
#End of step - update step number
CSEARCH.STEP = CSEARCH.STEP + 1
if progress_callback:
progress_callback(steps_completed=CSEARCH.STEP, steps_total=PARAMS.MAXSTEP)
#Summary of completed Full Monte search #######################
CSEARCH.COMPLETE = 1
WriteSummary(CSEARCH, PARAMS, start, log)
makeSDFformat(filein, MOLSPEC, CSEARCH, "fm", num_individual_files)
end = time.strftime("%H:%M:%S", time.localtime())
log.Write(asciiArt+end); log.Write(normaltermination); log.Finalize()
if __name__ == "__main__":
# An input file must be specified - format must be MOL #
if len(sys.argv)>1:
filein = sys.argv[1].split(".")[0]
if len(sys.argv[1].split(".mol"))>1: filetype = sys.argv[1].split(".")[1]
else:
logger.error("MOL file name required")
sys.exit()
# Get options if any are supplied on command line
maxstep, levl = None, None
for i in range(1,len(sys.argv)):
if sys.argv[i] == "-step":
maxstep = int(sys.argv[i+1])
elif sys.argv[i] == "-levl":
levl = sys.argv[i+1]
# Now call main function passing in params from the command line.
main(filein, filetype, maxstep, levl)
else:
logger.error("\nWrong number of arguments used. Correct format: FullMonte molecule.mol \n")
sys.exit()