-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmini.py
662 lines (569 loc) · 24.4 KB
/
mini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
'''
File: mini.py
Project: MINICHEM
File Created: Tuesday, 7th January 2020 10:46:58 am
Author: John Arul & Parth ([email protected], [email protected])
-----
Last Modified: Tuesday, 7th January 2020 10:54:36 am
Modified By: John Arul & Parth Patel ([email protected], [email protected])
-----
Copyright: IGCAR - 2020
'''
import re
import numpy as np
import warnings
import sympy
import scipy
from scipy.linalg import solve
import stoichiometric_coeff_matrix_generator
"""
This file contains mini solver (based on the quadratic gradient descent method)
and other helping functions, which are used in the solver.
"""
def mini_solver(input1, b, sp_g, INSERT, total_sp_c, a, a_g, trace,
dict_of_all_sp_grt, initial_sp_c, grt_dict,
stoichiometric_dict, switch,
temperature, v=0, pressure=1):
"""
determines the equilibrium species in the given species
input:
input1: list of the element in the inventory
b: inventory of the elements specified as input
sp_g: list of the gaseous species considered
INSERT: initial list of the condensed species, from which the iteration
starts. This speeds up the convergence if the several equilibrium species
are known before hand.
total_sp_c: list of the all condensed species considered for the
equilibrium calculation
a: condensed part of the stoichiometric matrix
a_g: gaseous part of the stoichiometric matrix
trace: min. amount of the allowed mole number
dict_of_all_sp_grt: chemical potential dictionary of the all chemical
species at the specified temperature.
initial_sp_c: initial list of the considered condensed chemical species
grt_dict: chemical potential dictionary of the all chemical specis at the
specified temperature.
stoichiometric_dict: dictionary consisting the stoimetric data for the all
the chemical species
temperature: specified temperature
v: system volume
returns
y: Equilibrium mole number species wise
sp_g: list of the gaseous phase species
sp_c: list of the condensed phase species
"""
discarded_sp_c = []
list_of_dependent_sp = [] # set of dependent condensed species.
outer_iteration = 0
while True:
print('Outer iteration no.:', outer_iteration)
if outer_iteration == 0:
sp_c = INSERT.copy()
if len(sp_c) != 0:
for i in sp_c:
del total_sp_c[total_sp_c.index(i)]
x_g = np.ones(len(sp_g)) * 10
x_c = np.ones(len(sp_c)) * 0.1
y_g = np.ones(len(sp_g)) * 100
y_c = np.ones(len(sp_c)) * 0.1
a_c = stoichiometric_coeff_matrix_generator.make_ac(
input1, b, sp_c, stoichiometric_dict)
else:
a_c = stoichiometric_coeff_matrix_generator.make_ac(
input1, b, sp_c, stoichiometric_dict)
if np.linalg.matrix_rank(a_c.transpose()) <\
a_c.transpose().shape[0]:
_, inds = sympy.Matrix(a_c.transpose()).T.rref()
print('Dependent species is occured, checking \
for dependent species')
ds2 = set(list_of_dependent_sp)
a_c, sp_c, total_sp_c, list_of_dependent_sp = \
stoichiometric_coeff_matrix_generator.test_for_dependence(
a_c, inds, input1, b, stoichiometric_dict, sp_c,
dict_of_all_sp_grt, a, pis, initial_sp_c, total_sp_c)
ds1 = set(list_of_dependent_sp)
if ds1 == ds2:
dependence_count += 1
print('Same dependence condensed species occured',
dependence_count, 'times.')
if dependence_count > 3:
dependence_count = 0
print('Same dependence count occured more \
than 3 time.')
outer_iteration = 0
INSERT = list(set(sp_c.copy()) - ds2)
print('The following species are being inserted:',
INSERT)
sp_c = INSERT.copy()
try:
if len(sp_c) != 0:
for i in sp_c:
del total_sp_c[total_sp_c.index(i)]
except:
pass
x_g = np.ones(len(sp_g)) * 1
y_g = np.ones(len(sp_g)) * 1
x_c = np.ones(len(sp_c)) * 10
y_c = np.ones(len(sp_c)) * 100
a_c =\
stoichiometric_coeff_matrix_generator.make_ac(
input1, b, sp_c, stoichiometric_dict)
else:
y_c = np.ones(len(sp_c)) * 100
x_c = np.ones(len(sp_c)) * 100
for i in range(len(sp_c)):
try:
y_c[i] = dict_yc[sp_c[i]]
x_c[i] = dict_yc[sp_c[i]]
except:
y_c[i] = 1
x_c[i] = 1
x_g = y_g.copy()
if switch == 'TV':
sp_g, sp_c, y_g, y_c, pis, a_c = sd_tv(trace, outer_iteration,
sp_c, sp_g,
x_c, x_g, y_c, y_g,
a_c, a_g, b, grt_dict,
temperature, v)
elif switch == 'TP':
sp_g, sp_c, y_g, y_c, pis, a_c = sd_tp(trace, outer_iteration,
sp_c, sp_g, x_c, x_g, y_c,
y_g, a_c, a_g, b, grt_dict,
temperature, v, pressure)
else:
print('Please enter valid switch value')
dict_yc = {}
for i in range(len(sp_c)):
dict_yc[sp_c[i]] = y_c[i]
list_of_potential = []
for i in range(len(total_sp_c)):
list_of_potential.append(dict_of_all_sp_grt[total_sp_c[i]] -
sum(pis *
a[:, initial_sp_c.index(total_sp_c[i])]))
if (np.array(list_of_potential) > 0).all():
break
else:
considered_condensed_sp = \
(total_sp_c[list_of_potential.index(min(list_of_potential))])
sp_c.append(considered_condensed_sp)
del total_sp_c[list_of_potential.index(min(list_of_potential))]
k13 = 0
for i in range(len(y_c)):
if y_c[i] < 0:
discarded_sp_c.append(sp_c[k13])
total_sp_c.append(sp_c[k13])
del sp_c[k13]
k13 = k13 - 1
k13 = k13 + 1
print('Considered condensed species at the end of one outer iteration',
sp_c)
outer_iteration = outer_iteration + 1
y = []
for i in range(len(sp_g)):
y.append(y_g[i])
for i in range(len(sp_c)):
y.append(y_c[i])
y = np.array(y)
return y, sp_g, sp_c
def sd_tv(trace, outer_iteration, sp_c, sp_g, x_c, x_g, y_c, y_g, a_c, a_g,
b, grt_dict, temperature, v):
"""
input:
trace: The species less number mole than trace will be assigned the value
of trace, this will reduce the time require for the convergence.
outer_iteration: Specifies the outer iteration number
sp_c: list of the species in the condensed phase considered for the
iteration
sp_g: list of the species in the gaseous phase, considered for the
iteration.
x_c: actual mole numbers for the condensed species
x_g: actual mole numbers for the gaseous phase species
y_c: guessed mole numbers for the condensed species
y_g: guessed mole numbers for the gaseous phase species
a_c: stoichiometric matrix for the condensed species
a_g: stoichiometric matrix for the gaseous phase species
b : inventory of the element as per specified in the input
grt_dict: chemical potential dictionary
temperature: specified temperature
v: volume of the system
returns:
y_g: Equilibrium mole number gaseous species wise
y_c: Equilibrium mole number condensed species wise
sp_g: list of the gaseous phase species
sp_c: list of the condensed phase species
a_c: condensed part of the stoichiometric coeff matrix
pis: values of the pi for each element
"""
R = 8.31445984848484848484
# =============================================================================
# While loop
# =============================================================================
# while iteration < 5000:
fi = np.zeros(len(sp_g))
old_pis = np.zeros(len(b))
inner_iteration = 0
while True:
# =====================================================================
# Matrix generation
# =====================================================================
for i in range(len(sp_g)):
fi[i] = y_g[i] * (grt_dict[sp_g[i]] +
np.log(sum(y_g) * R * temperature/v/1e5) +
np.log(y_g[i]/sum(y_g))) # added one
rw1 = np.hstack((a_c.transpose(), np.zeros([len(sp_c), len(sp_c)])))
temp_array1 = np.zeros([1, len(b)])
for i in range(len(b)):
sum3 = 0
for j in range(len(y_g)):
sum3 = sum3 + y_g[j] * a_g.transpose()[j, i]
temp_array1[0, i] = sum3
rw2 = np.hstack((temp_array1, np.zeros([1, len(sp_c)])))
# r matrix preparation
r = np.zeros([len(b), len(b)])
for i in range(len(b)):
for j in range(len(b)):
r[i, j] = sum(a_g.transpose()[:, i] *
a_g.transpose()[:, j] * y_g)
temp_array2 = np.zeros([len(b), len(x_c)])
for i in range(len(b)):
for j in range(len(x_c)):
temp_array2[i, j] = a_c[i, j]
rw3 = np.hstack((r, temp_array2))
pi_matrix = np.vstack((rw1, rw3))
temp_array4 = np.zeros([len(y_c), 1])
for i in range(len(sp_c)):
temp_array4[i] = grt_dict[sp_c[i]]
temp_array6 = np.zeros([len(b), 1])
correction = np.zeros(len(b))
for i in range(len(b)):
correction[i] = sum(a_g.transpose()[:, i] * y_g) - b[i]
for i in range(len(b)):
temp_array6[i, 0] = sum(a_g.transpose()[:, i] * fi) -\
correction[i]
rhs = np.vstack((temp_array4, temp_array6))
# =========================================================================
# matrix inversion
# =========================================================================
with warnings.catch_warnings():
warnings.filterwarnings('error')
try:
sol = solve(pi_matrix, rhs)
except scipy.linalg.LinAlgError as err:
if 'Singular matrix' in str(err):
# error handling block
print('Sinularity occured, breaking inner iteration loop')
return sp_g, sp_c, y_g, y_c, pis, a_c
except Warning as e: # scipy.linalg.LinAlgWarning as war
print('Ill-conditioned matrix, breaking inner iteration')
return sp_g, sp_c, y_g, y_c, old_pis, a_c
pis = sol[0:len(b), 0]
k1 = 0
for i in range(len(b), len(b) + len(x_c)):
x_c[k1] = sol[i, 0]
k1 = k1 + 1
for i in range(len(x_g)):
x_g[i] = -fi[i] + (y_g[i] *
(sum(pis * a_g.transpose()[i, :]) + 1))
# =========================================================================
# =========================================================================
# Convergence test
# =========================================================================
if outer_iteration == 0:
if (abs(b - a_g.dot(y_g) - a_c.dot(y_c)) <= max(b) * 1e-5).all():
print('break due to convergence criteria')
break
else:
if abs((sum(x_g) + sum(x_c))/(sum(y_g) + sum(y_c)) - 1) < 1e-8\
and (abs((old_pis - pis)/pis) < 0.001).all():
break
old_pis = pis.copy()
# =========================================================================
# lembda determination
# =========================================================================
lg = np.ones(len(x_g)) * 1e15
lc = np.ones(len(x_c)) * 1e15
if (x_g <= 0).any():
for i in range(len(x_g)):
if x_g[i] <= 0:
lg[i] = y_g[i] / (y_g[i] - x_g[i])
else:
for i in range(len(x_g)):
if x_g[i] <= 0:
lg[i] = y_g[i] / (y_g[i] - x_g[i])
for i in range(len(x_c)):
if x_c[i] <= 0:
lc[i] = y_c[i] / (y_c[i] - x_c[i])
try:
ld = np.clip(min(min(lg), min(lc)), 0, np.inf)
except:
ld = np.clip(min(lg), 0, np.inf)
lembda = 0.999 * ld * (1 - ld * 0.5)
if lembda == 0:
lembda = 1e-3
for i in range(len(y_g)):
y_g[i] = y_g[i] + lembda * (x_g[i] - y_g[i])
if abs(y_g[i]) < trace:
y_g[i] = 1e-20
x_g[i] = 1e-20
for i in range(len(y_c)):
y_c[i] = y_c[i] + lembda * (x_c[i] - y_c[i])
if abs(y_c[i]) < trace:
y_c[i] = 1e-20
x_c[i] = 1e-20
if inner_iteration > 10000:
print('Breaking iterative loop, inner iterations exceeds \
iteration limit')
break
inner_iteration = inner_iteration + 1
return sp_g, sp_c, y_g, y_c, pis, a_c
def sd_tp(trace, outer_iteration, sp_c, sp_g, x_c, x_g, y_c, y_g, a_c, a_g,
b, grt_dict, temperature, v, pressure):
"""
input:
trace: The species less number mole than trace will be assigned the value
of trace, this will reduce the time require for the convergence.
outer_iteration: Specifies the outer iteration number
sp_c: list of the species in the condensed phase considered for the
iteration
sp_g: list of the species in the gaseous phase, considered for the
iteration.
x_c: actual mole numbers for the condensed species
x_g: actual mole numbers for the gaseous phase species
y_c: guessed mole numbers for the condensed species
y_g: guessed mole numbers for the gaseous phase species
a_c: stoichiometric matrix for the condensed species
a_g: stoichiometric matrix for the gaseous phase species
b : inventory of the element as per specified in the input
grt_dict: chemical potential dictionary
temperature: specified temperature
pressure: pressure of the system
returns:
y_g: Equilibrium mole number gaseous species wise
y_c: Equilibrium mole number condensed species wise
sp_g: list of the gaseous phase species
sp_c: list of the condensed phase species
a_c: condensed part of the stoichiometric coeff matrix
pis: values of the pi for each element
"""
R = 8.31445984848484848484
# =========================================================================
# While loop
# =========================================================================
# while iteration < 5000:
fi = np.zeros(len(sp_g))
old_pis = np.zeros(len(b))
inner_iteration = 0
while True:
# print('inner iteration no', inner_iteration)
# =====================================================================
# Matrix generation
# =====================================================================
for i in range(len(sp_g)):
fi[i] = y_g[i] * (grt_dict[sp_g[i]] +
np.log(pressure) +
np.log(y_g[i]/sum(y_g))) # added one
rw1 = np.hstack((a_c.transpose(), np.zeros([len(sp_c), len(sp_c)]),
np.zeros([len(sp_c), 1])))
temp_array1 = np.zeros([1, len(b)])
for i in range(len(b)):
sum3 = 0
for j in range(len(y_g)):
sum3 = sum3 + y_g[j] * a_g.transpose()[j, i]
temp_array1[0, i] = sum3
rw2 = np.hstack((temp_array1, np.zeros([1, len(sp_c)]),
np.zeros([1, 1])))
# r matrix preparation
r = np.zeros([len(b), len(b)])
for i in range(len(b)):
for j in range(len(b)):
r[i, j] = sum(a_g.transpose()[:, i] *
a_g.transpose()[:, j] * y_g)
temp_array2 = np.zeros([len(b), len(x_c)])
for i in range(len(b)):
for j in range(len(x_c)):
temp_array2[i, j] = a_c[i, j]
temp_array3 = np.zeros([len(b), 1])
for i in range(len(b)):
temp_array3[i, 0] = sum(a_g.transpose()[:, i] * y_g)
rw3 = np.hstack((r, temp_array2, temp_array3))
pi_matrix = np.vstack((rw1, rw2, rw3))
temp_array4 = np.zeros([len(y_c), 1])
for i in range(len(sp_c)):
temp_array4[i] = grt_dict[sp_c[i]]
temp_array5 = np.array([[sum(fi)]])
temp_array6 = np.zeros([len(b), 1])
correction = np.zeros(len(b))
for i in range(len(b)):
correction[i] = sum(a_g.transpose()[:, i] * y_g) - b[i]
for i in range(len(b)):
temp_array6[i, 0] = sum(a_g.transpose()[:, i] * fi) -\
correction[i]
rhs = np.vstack((temp_array4, temp_array5, temp_array6))
# print(sp_g, rhs, pi_matrix)
# =========================================================================
# matrix inversion
# =========================================================================
with warnings.catch_warnings():
warnings.filterwarnings('error')
try:
# sol = np.linalg.inv(pi_matrix).dot(rhs)
sol = solve(pi_matrix, rhs)
except scipy.linalg.LinAlgError as err:
if 'Singular matrix' in str(err):
# your error handling block
print('sinularity occured, breaking inner iteration')
return sp_g, sp_c, y_g, y_c, pis, a_c
except Warning as e: # scipy.linalg.LinAlgWarning as war
print('Ill-conditioned matrix, breaking inner iteration', e)
return sp_g, sp_c, y_g, y_c, old_pis, a_c
pis = sol[0:len(b), 0]
k1 = 0
for i in range(len(b), len(b) + len(x_c)):
x_c[k1] = sol[i, 0]
k1 = k1 + 1
u = sol[-1]
# print('u:', u)
for i in range(len(x_g)):
x_g[i] = -fi[i] + (y_g[i] *
(u + 1 + sum(pis * a_g.transpose()[i, :])))
# y_c = x_c.copy()
# =========================================================================
# =========================================================================
# Convergence test
# =========================================================================
if outer_iteration == 0:
if (abs(b - a_g.dot(y_g)) - a_c.dot(y_c) <= max(b) * 1e-6).all():
print('break due to convergence criteria')
break
else:
# if (abs((old_pis - pis)/pis) < 0.001).all():
# print('pie convergence criteria met')
# break
if abs(u) < 1e-8 and \
abs((sum(x_g) + sum(x_c))/(sum(y_g) + sum(y_c)) - 1) < 1e-8:
# break
break
old_pis = pis.copy()
# rmse = np.sqrt(np.sum((y_g - x_g))**2 / len(x_g))
# print(rmse)
# if rmse < 1e-2:
# break
# =========================================================================
# lembda determination
# =========================================================================
lg = np.ones(len(x_g)) * 1e15
lc = np.ones(len(x_c)) * 1e15
if (x_g <= 0).any():
for i in range(len(x_g)):
if x_g[i] <= 0:
lg[i] = y_g[i] / (y_g[i] - x_g[i])
# if lg[i] <= 0:
# lg[i] = 1e10
else:
for i in range(len(x_g)):
if x_g[i] <= 0:
lg[i] = y_g[i] / (y_g[i] - x_g[i])
# if lg[i] <= 0:
# lg[i] = 1e10
for i in range(len(x_c)):
if x_c[i] <= 0:
lc[i] = y_c[i] / (y_c[i] - x_c[i])
# if lc[i] <= 0:
# lc[i] = 1e10
try:
ld = np.clip(min(min(lg), min(lc)), 0, np.inf)
except:
ld = np.clip(min(lg), 0, np.inf)
lembda = 0.999 * ld * (1 - ld * 0.5)
if lembda == 0 or abs(lembda) >= 1e10:
lembda = 1e-3
# print('hi', lembda)
# print(lembda)
# if inner_iter == 0:
for i in range(len(y_g)):
y_g[i] = y_g[i] + lembda * (x_g[i] - y_g[i])
if abs(y_g[i]) < trace:
y_g[i] = 1e-20
x_g[i] = 1e-20
for i in range(len(y_c)):
y_c[i] = y_c[i] + lembda * (x_c[i] - y_c[i])
if abs(y_c[i]) < trace:
y_c[i] = 1e-20
x_c[i] = 1e-20
# print(list(zip(sp_g, y_g)), list(zip(sp_c, y_c)))
if inner_iteration > 15000:
print('program break from iteration limit')
break
# print(y_g)
inner_iteration = inner_iteration + 1
return sp_g, sp_c, y_g, y_c, pis, a_c
def min_fun_helmholtz(x, species, grt_dict, temperature, v):
"""
helmholtz function
input:
x: array containing mole numbers
species: list of species
grt_dict: dictionary of chemical potential for all the chemical species
temperature: specified temperature
v: system volume
returns: helmholtz function value
"""
R = 8.31445984848484848484 # gas constant
sum1 = 0
gas = 0
liquid = 0
cr = 0
condense_phase_match = '\([A|B|H|L|a|b|c|d|d\'|e|X|cr|I|III|II]*\)'
for i in range(len(species)):
# finds total moles of gaseous species, liquid and crystal form
if re.findall(condense_phase_match, species[i]) == []:
gas = gas + x[i]
elif re.findall(condense_phase_match,
species[i]) == ['(L)']:
liquid = liquid + x[i]
else:
cr = cr + x[i]
for i in range(len(species)):
if re.findall(condense_phase_match, species[i]) == []:
sum1 = sum1 + x[i] * (grt_dict[species[i]]
+ np.log(gas * R * 1e-5 *
temperature / v)
+ np.log(x[i] / gas))
else:
sum1 = sum1 + x[i] * (grt_dict[species[i]])
return sum1
def gibbs_calculate(x, species, grt_dict, temperature, P):
"""
Gibbs function
input:
x: array containing mole numbers
species: list of species
grt_dict: dictionary of chemical potential for all the chemical species
temperature: specified temperature
P: system pressure
returns: Gibbs function value
"""
sum1 = 0
gas = 0
liquid = 0
cr = 0
condense_phase_match = '\([A|B|H|L|a|b|c|d|d\'|e|X|cr|I|III|II]*\)'
for i in range(len(species)):
# finds total moles of gaseous species, liquid and crystal form
if re.findall(condense_phase_match, species[i]) == []:
gas = gas + x[i]
elif re.findall(condense_phase_match,
species[i]) == ['(L)']:
liquid = liquid + x[i]
else:
cr = cr + x[i]
for i in range(len(species)):
if re.findall(condense_phase_match, species[i]) == []:
sum1 = sum1 + x[i] * (grt_dict[species[i]]
+ np.log(P)
+ np.log(x[i] / gas))
else:
sum1 = sum1 + x[i] * (grt_dict[species[i]])
return sum1
def jac_eq_const(x):
return a