-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_classifier_comparison.py
115 lines (101 loc) · 4.49 KB
/
plot_classifier_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/python
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib
matplotlib.use('Agg') # for linux server without display
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
#from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from rsvm import SVM, RSVM, CSSVM
h = .02 # step size in the mesh
names = ["SVM(linear)", "SVM(rbf)", "RSVM(rbf)", "CSSVM(rbf)"]
"""
classifiers = [SVM(C=1, kernel='linear', gamma='auto'),
SVM(C=1, kernel='rbf', gamma='auto'),
RSVM(C=1, kernel='rbf', gamma='auto'),
CSSVM(C=1, kernel='rbf', gamma='auto')]
"""
tuned_parameters_l = [{'kernel': ['linear'],
'C': [0.01, 0.1, 1, 10, 100]
}]
tuned_parameters_rbf = [{'kernel': ['rbf'],
'C': [0.01, 0.1, 1, 10, 100]
}]
classifiers = [GridSearchCV(SVM(C=1, kernel='linear', gamma='auto'), tuned_parameters_l, cv=5, scoring=None, n_jobs=20),
GridSearchCV(SVM(C=1, kernel='rbf', gamma='auto'), tuned_parameters_rbf, cv=5, scoring=None, n_jobs=20),
GridSearchCV(RSVM(C=1, kernel='rbf', gamma='auto'), tuned_parameters_rbf, cv=5, scoring=None, n_jobs=20),
GridSearchCV(CSSVM(C=1, kernel='rbf', gamma='auto'), tuned_parameters_rbf, cv=5, scoring=None, n_jobs=20)]
X, y = make_classification(n_samples=500, n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
datasets = [make_moons(n_samples=500, noise=0.3, random_state=0),
make_circles(n_samples=500, noise=0.2, factor=0.5, random_state=1),
linearly_separable
]
figure = plt.figure()
i = 1
# iterate over datasets
for ds in datasets:
# preprocess dataset, split into training and test part
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#0000FF', '#FF0000'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
dot_size = 5000.0/len(X)
# Plot the training points
#ax.scatter(X_train[:, 0], X_train[:, 1], s=dot_size, c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], s=dot_size, c=y_test, cmap=cm_bright, alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1
# iterate over classifiers
for name, clf in zip(names, classifiers):
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
print name
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
for params, mean_score, scores in clf.grid_scores_:
print("%0.3f (+/-%0.03f) for %r"
% (mean_score, scores.std() * 2, params))
print()
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
# Plot also the training points
#ax.scatter(X_train[:, 0], X_train[:, 1], s=dot_size, c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], s=dot_size, c=y_test, cmap=cm_bright,
alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
size=15, horizontalalignment='right')
i += 1
figure.subplots_adjust(left=.02, right=.98)
#plt.show()
plt.savefig('comparison.png',dpi=500)