-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathargs.py
273 lines (261 loc) · 12.2 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
def get_args():
parser = argparse.ArgumentParser()
# Meta
parser.add_argument('--name',
'-n',
type=str,
help='Name to identify training or test run.')
parser.add_argument('--gpu_id',
type=int,
default=0,
help='GPU ID')
parser.add_argument('--save_dir',
type=str,
default='./save/',
help='Base directory for saving information.')
parser.add_argument('--enforce_cpu',
type=lambda s: s.lower().startswith('t'),
default=False,
help='Whether forcing CPU.')
parser.add_argument('--load_path',
type=str,
default=None,
help='Path to load as a model checkpoint.')
parser.add_argument('--debug',
type=lambda s: s.lower().startswith('t'),
default=False,
help='Whether print debug info.')
parser.add_argument('--record',
type=lambda s: s.lower().startswith('t'),
default=False,
help='Whether record videos for evaluation.')
parser.add_argument('--video_save_path',
type=str,
default='./save/video_recording/',
help='Path to load as a model checkpoint.')
# Train
parser.add_argument('--n_epochs',
type=int,
default=1000,
help='Number of epochs for which to train. Negative means forever.')
parser.add_argument('--policy_lr',
type=float,
default=3e-4, # 1e-4
help='Learning rate for policy.')
parser.add_argument('--baseline_lr',
type=float,
default=3e-4,
help='Learning rate for baseline/value function.')
parser.add_argument('--n_episodes_per_epoch',
type=int,
default=50,
help='Number of episodes in one epoch.')
parser.add_argument('--n_eval_episodes',
type=int,
default=100,
help='Number of episodes in one evaluation.')
parser.add_argument('--eval_greedy',
type=lambda s: s.lower().startswith('t'),
default=True,
help='Whether use greedy action in evaluation mode.')
parser.add_argument('--weight_decay',
type=float,
default=0.01,
help='L2 regularization coefficient.')
# parser.add_argument('--metric_name',
# type=str,
# default='<Num Achieved Individual Instructions>',
# help='Name of dev metric to determine best checkpoint.')
parser.add_argument('--max_checkpoints',
type=int,
default=5,
help='Maximum number of checkpoints to keep on disk.')
parser.add_argument('--max_grad_norm',
type=float,
default=5.0,
help='[Not used] Maximum gradient norm for gradient clipping.')
parser.add_argument('--seed',
type=int,
default=1,
help='Random seed for reproducibility.')
parser.add_argument('--visualize',
type=lambda s: s.lower().startswith('t'),
default=False,
help='Whether visualize the animation of a policy.')
parser.add_argument('--eval',
type=lambda s: s.lower().startswith('t'),
default=False,
help='Whether enter eval mode.')
parser.add_argument('--eval_steps',
type=int,
default=20000,
help='Number of steps between successive evaluations.')
parser.add_argument('--eval_epochs',
type=int,
default=10,
help='Number of epochs between successive evaluations.')
parser.add_argument('--continuing_checkpoint',
type=str,
default=None,
help='Whether continue from a checkpoint.')
# Env
parser.add_argument('--env',
type=str,
default='traffic',
help='Which env to use.')
parser.add_argument('--n_agents',
type=int,
default=8,
help='Number of agents')
parser.add_argument('--proximity_threshold',
type=float,
default=1.5)
parser.add_argument('--self_connected_adj',
type=lambda s: s.lower().startswith('t'),
default=True,
help='Whether adding self-connection to adjacency matrix.')
parser.add_argument('--inverse_D',
type=lambda s: s.lower().startswith('t'),
default=True,
help='Whether inversing the sqrt of degree matrix.')
parser.add_argument('--max_episode_steps',
type=int,
default=100,
help='The max number of steps in an episode.')
parser.add_argument('--difficulty',
type=str,
default='hard',
help='[Traffic Junction] Game difficulty.')
parser.add_argument('--penalty',
type=float,
default=0,
help='[Predator-Prey] Single-agent capture attempt penalty.')
parser.add_argument('--n_entities',
type=int,
default=8,
help='[Predator-Prey] Number of prey.')
parser.add_argument('--n_grids',
type=int,
default=10,
help='Size of grid world.')
parser.add_argument('--agent_visible',
type=lambda s: s.lower().startswith('t'),
default=True,
help='Whether other agents are visible to each agent.')
parser.add_argument('--render_adj',
type=lambda s: s.lower().startswith('t'),
default=False,
help='Whether draw edges during video rendering.')
# Sampler
parser.add_argument('--batch_size',
type=int,
default=60000,
help='[Num env steps] Batch size per GPU. Scales \
automatically when multiple GPUs are available.')
parser.add_argument('--n_trajs_limit',
type=int,
default=400,
help='Number of trajectories.')
parser.add_argument('--limit_by_traj',
type=lambda s: s.lower().startswith('t'),
default=False,
help='Whether limit sampler iters using the number of trajs.')
# Algo
parser.add_argument('--discount',
type=float,
default=0.99,
help='Discount factor.')
parser.add_argument('--gae_lambda',
type=float,
default=0.97,
help='Discount factor for TD(lambda) used by GAE.')
parser.add_argument('--ent',
type=float,
default=0.05,
help='Policy entropy coefficient for policy gradient algorithm')
parser.add_argument('--lr_clip_range',
type=float,
default=2e-1,
help='Likelihood ratio clipping range of PPO.')
parser.add_argument('--optimization_n_minibatches',
type=int,
default=4,
help='Splitting trajectory samples into minibatches.')
parser.add_argument('--optimization_mini_epochs',
type=int,
default=10,
help='Optimization epochs for each minibatch.')
# parser.add_argument('--epsilon',
# type=float,
# default=1.0,
# help='The initial value of the coefficient for epsilon-greedy policy.')
# parser.add_argument('--min_epsilon',
# type=float,
# default=0.1,
# help='The final minimum value of epsilon.')
# parser.add_argument('--epsilon_decay',
# type=float,
# default=0.992,
# help='The decay rate of epsilon.')
# parser.add_argument('--epsilon_decay_ratio',
# type=float,
# default=0.6,
# help='The ratio of epochs before decreasing to min epsilon.')
# parser.add_argument('--tau',
# type=float,
# default=0.95,
# help='Weight coefficient for moving average update for target network.')
# parser.add_argument('--update_target_by_copy',
# type=lambda s: s.lower().startswith('t'),
# default=False,
# help='Whether upadte target network by copying the current Q network,\
# otherwise use moving average with the current Q network.')
# parser.add_argument('--replay_buffer_size',
# type=int,
# default=2e6,
# help='Number of transition tuples in the experience\
# replay buffer.')
# parser.add_argument('--qf_update_steps',
# type=int,
# default=100,
# help='Update Q network how many times for one episode.')
# Policy/Model
parser.add_argument('--policy',
type=str,
default='proximal_cg',
help='Which policy to use.')
parser.add_argument('--n_gcn_layers',
type=int,
default=2,
help='Number of GCN layers.')
# Edge Predictor
parser.add_argument('--edge_predictor_pred_method',
type=str,
default='gumbel',
help='How to predict discrete edges.')
parser.add_argument('--edge_predictor_input_method',
type=str,
default='diff',
help='How to build inputs for edge predictor.')
parser.add_argument('--edge_predictor_checkpoint_path',
type=str,
default='./save/meet/edge_pred_data/meet_14_input=diff_'
+ 'threshold=2.0_nagents=10_npos=3e+06_neg2pos=2.0_'
+ 'sc=False_weighdacay=0.00_tau=0.25-01/best.pth.tar')
parser.add_argument('--tau',
type=float,
default=0.25,
help='Temperature for Gumbel softmax.')
parser.add_argument('--max_n_positive_samples',
type=int,
default=3e6,
help='The maximum number of positive samples in training dataset.')
parser.add_argument('--neg2pos',
type=float,
default=2.0,
help='The ratio between the number of negative samples and positive samples.')
args = parser.parse_args()
args.maximize_metric = True
return args
args = get_args()