-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathext.datafig8.R
179 lines (160 loc) · 9.02 KB
/
ext.datafig8.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# This code makes extended data figure 8, a sensitivty analysis of
# changes in predicted population exposured to floods form the WRI Aqueduct model
# at different return periods
#add working directory for .csv files
setwd("/Users/bethtellman/Desktop/papers/GFD/gfd_nature-master/data")
library(ggplot2)
library(countrycode)
library(plyr)
#ssp2 population data
#add total pop data from SSP2
#2010
SSP22010<-read.csv("data/SSP2010.csv")
SSP22010$pop2010<-SSP22010$sum
#2030
SSP22030<-read.csv("data/SSP2030.csv")
SSP22010$pop2030<-SSP22030$sum
#join 2010 ands 2030 data
SSP2<-join(SSP22010,SSP22030, by= "system.index")
#assign country codes
SSP2$cc<- countrycode(SSP2$country, "country.name", "iso2c" , origin_regex=TRUE)
#aqueduct flood data, see Aqueduct dictionary for explanation of each column name
Aquecountry0<-read.csv('data/aqueductcountrydata.csv')
#assign it country codes and names
Aquecountry0$cc<- countrycode(Aquecountry0$unit_name, "country.name", "iso2c" , origin_regex=TRUE)
Aquecountry0$continent<- countrycode(Aquecountry0$cc, "iso2c", "continent" , origin_regex=TRUE)
#join SSP and Aqueduct data
Aquecountry<- join(Aquecountry0,SSP2, by="cc")
#change ratio, porportional changes in flood population exposed vs. population growth from SSP
changeccp500<-(Aquecountry$P30_28_500/Aquecountry$pop2030)/(Aquecountry$P10_bh_500/Aquecountry$pop2010)
changeccp100<-(Aquecountry$P30_28_100/Aquecountry$pop2030)/(Aquecountry$P10_bh_100/Aquecountry$pop2010)
changeccp250<-(Aquecountry$P30_28_250/Aquecountry$pop2030)/(Aquecountry$P10_bh_250/Aquecountry$pop2010)
changeccp50<-(Aquecountry$P30_28_50/Aquecountry$pop2030)/(Aquecountry$P10_bh_50/Aquecountry$pop2010)
changeccp25<-(Aquecountry$P30_28_25/Aquecountry$pop2030)/(Aquecountry$P10_bh_25/Aquecountry$pop2010)
changeccp10<-(Aquecountry$P30_28_10/Aquecountry$pop2030)/(Aquecountry$P10_bh_10/Aquecountry$pop2010)
#store in the data frame
Aquecountry$changeccp500<-changeccp500
Aquecountry$changeccp100<-changeccp100
Aquecountry$changeccp250<-changeccp250
Aquecountry$changeccp50<-changeccp50
Aquecountry$changeccp25<-changeccp25
Aquecountry$changeccp10<-changeccp10
#abschange
Aquecountry$changeccabs500<-Aquecountry$P30_28_500-Aquecountry$P10_bh_500
Aquecountry$changeccabs100<-Aquecountry$P30_28_100-Aquecountry$P10_bh_100
Aquecountry$changeccabs250<-Aquecountry$P30_28_250-Aquecountry$P10_bh_250
Aquecountry$changeccabs50<-Aquecountry$P30_28_50-Aquecountry$P10_bh_50
Aquecountry$changeccabs25<-Aquecountry$P30_28_25-Aquecountry$P10_bh_25
Aquecountry$changeccabs10<-Aquecountry$P30_28_10-Aquecountry$P10_bh_10
#percentchange
Aquecountry$changeccper500<-(Aquecountry$P30_28_500-Aquecountry$P10_bh_500)/Aquecountry$P10_bh_500*100
Aquecountry$changeccper100<-(Aquecountry$P30_28_100-Aquecountry$P10_bh_100)/Aquecountry$P10_bh_250*100
Aquecountry$changeccper250<-(Aquecountry$P30_28_250-Aquecountry$P10_bh_250)/Aquecountry$P10_bh_100*100
Aquecountry$changeccper50<-(Aquecountry$P30_28_50-Aquecountry$P10_bh_50)/Aquecountry$P10_bh_50*100
Aquecountry$changeccper25<-(Aquecountry$P30_28_25-Aquecountry$P10_bh_25)/Aquecountry$P10_bh_25*100
Aquecountry$changeccper10<-(Aquecountry$P30_28_10-Aquecountry$P10_bh_10)/Aquecountry$P10_bh_10*100
library(reshape2)
#melt data frame, aqueduct flood population exposure
AQmeltp<-melt(Aquecountry, id.vars = c("continent", "unit_name"), measure.vars= c('changeccp500','changeccp250','changeccp100',
'changeccp25',
'changeccp10'))
library(dplyr)
AQmeltp <- AQmeltp %>%
mutate(variable_rec = factor(recode(variable,
"changeccp500"="500",
"changeccp250"="250",
"changeccp100"="100",
"changeccp25"="25",
"changeccp10"="10")))
#melt data frame, aqueduct flood population exposure in 2030
AQmelt2030<-melt(Aquecountry, id.vars = c("continent", "unit_name"), measure.vars= c('P30_28_500', 'P30_28_250','P30_28_100',
'P30_28_50','P30_28_25', 'P30_28_10'))
#absolute change
AQmeltabschange<-melt(Aquecountry, id.vars = c("continent", "unit_name"), measure.vars= c('changeccabs500','changeccabs250','changeccabs100',
'changeccabs25',
'changeccabs10'))
#recode for plotting
AQmeltabschange<- AQmeltabschange%>%
mutate(variable_rec = factor(recode(variable,
"changeccabs500"="500",
"changeccabs250"="250",
"changeccabs100"="100",
"changeccabs25"="25",
"changeccabs10"="10")))
#percentchange
AQmeltperchange<-melt(Aquecountry, id.vars = c("continent", "unit_name"), measure.vars= c('changeccper500','changeccper250','changeccper100',
'changeccper25',
'changeccper10'))
#recode for plotting
AQmeltperchange<- AQmeltperchange%>%
mutate(variable_rec = factor(recode(variable,
"changeccper500"="500",
"changeccper250"="250",
"changeccper100"="100",
"changeccper25"="25",
"changeccper10"="10")))
#remove obs with NA in column
AQmeltabschangenoNA<-AQmeltabschange[!is.na(AQmeltabschange$continent),]
AQmeltpNA<-AQmeltp[!is.na(AQmeltp$continent),]
AQmeltperchangeNA<-AQmeltperchange[!is.na(AQmeltperchange$continent),]
#this is to make extended data figure 7
pcp<-ggplot(AQmeltpNA, aes(x=variable_rec, y=value, fill=continent))
library(scales)
library(Hmisc)
prop<-pcp+
geom_boxplot()+
ggtitle("d")+
labs(y= "change in proportion \n pop. exposed to floods 2030-2010", x="return period ")+
#stat_summary(fun.data = mean_cl_boot, na.rm=TRUE, geom = "pointrange", position=position_dodge(.5),width = 0.2)+
theme(plot.title = element_text(size=8 * ggplot2:::.pt, face = "bold"),
text = element_text(size=5 * ggplot2:::.pt),
axis.text.x=element_text(size=5 * ggplot2:::.pt),
axis.title.y=element_text(size=5 * ggplot2:::.pt),
axis.text.y=element_text(size=5 * ggplot2:::.pt))
prop
Aquecountry$popgrowth<-(Aquecountry$pop2030-Aquecountry$pop2010)/Aquecountry$pop2010*100
AquecountryNA<-Aquecountry[!is.na(Aquecountry$continent),]
pop<-ggplot(AquecountryNA, aes(y=popgrowth, x=continent, fill=continent)) +
geom_boxplot()+
ggtitle("c")+
labs(y= "percent increase \n total population 2030-2010")+
#stat_summary(fun.data = mean_cl_boot, na.rm=TRUE, geom = "pointrange", position=position_dodge(.5),width = 0.2)+
theme(plot.title = element_text(size=8 * ggplot2:::.pt, face = "bold"),
axis.text.x=element_blank(),
axis.title.x=element_blank(),
text = element_text(size=5 * ggplot2:::.pt),
axis.title.y=element_text(size=5 * ggplot2:::.pt),
axis.text.y=element_text(size=5 * ggplot2:::.pt))
pop
pcabschange<-ggplot(AQmeltabschangenoNA, aes(x=variable_rec, y=(value), fill=continent))
abs<-pcabschange+ ggtitle("a")+
geom_boxplot()+
#ylim(0,20)+
labs(y= "change in total \n pop. exposed to floods 2030-2010", x="return period ")+
#stat_summary(fun.data = mean_cl_boot, na.rm=TRUE, geom = "pointrange", position=position_dodge(.5), width = 0.2) +
#scale_y_continuous(labels=unit_format(units="M", scale= 1e-6))+
#scale_y_continuous( trans="log10")+
scale_y_log10(breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x))) +
annotation_logticks(sides="l") +
#coord_trans(y = "log10")+
theme(plot.title = element_text(size=8 * ggplot2:::.pt, face = "bold"),
text = element_text(size=5 * ggplot2:::.pt),
axis.text.x=element_text(size=5 * ggplot2:::.pt),
axis.title.y=element_text(size=5 * ggplot2:::.pt),
axis.text.y=element_text(size=5 * ggplot2:::.pt))
abs
pperchange<-ggplot(AQmeltperchangeNA, aes(x=variable_rec, y=value, fill=continent))
per<-pperchange+ ggtitle("b")+
geom_boxplot()+
labs(y= "percent increase \n pop. exposed to floods 2030-2010", x="return period ")+
#stat_summary(fun.data = mean_cl_boot, na.rm=TRUE, geom = "pointrange", position=position_dodge(.5), width = 0.2) +
theme(plot.title = element_text(size=8 * ggplot2:::.pt, face = "bold"),
text = element_text(size=5 * ggplot2:::.pt),
axis.text.x=element_text(size=5 * ggplot2:::.pt),
axis.title.y=element_text(size=5 * ggplot2:::.pt),
axis.text.y=element_text(size=5 * ggplot2:::.pt))
per
library(ggpubr)
boxes<-ggarrange(abs,per, pop,prop, ncol=2, nrow=2 ,common.legend= TRUE)
boxes