Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pd.Series Iterable vs. Sequence #812

Closed
Ranfir opened this issue Nov 4, 2023 · 2 comments · Fixed by #1087
Closed

pd.Series Iterable vs. Sequence #812

Ranfir opened this issue Nov 4, 2023 · 2 comments · Fixed by #1087

Comments

@Ranfir
Copy link

Ranfir commented Nov 4, 2023

Describe the bug
Type annotation for pd.Series uses Sequence[Any] instead of Iterable[Any], but the documentation states that argument can be an iterable.

To Reproduce

  1. Provide a minimal runnable pandas example that is not properly checked by the stubs.
import pandas as pd

pd.Series({}.keys())
  1. Indicate which type checker you are using (mypy or pyright).
    mypy
  2. Show the error message received from that type checker while checking your example.
scratch.py:3: error: No overload variant of "Series" matches argument type "dict_keys[<nothing>, <nothing>]"  [call-overload]
scratch.py:3: note: Possible overload variants:
scratch.py:3: note:     def [S1] Series(data: DatetimeIndex | Sequence[datetime64 | datetime] | datetime64 | datetime, index: Index[Any] | Series[Any] | ndarray[Any, Any] | list[Any] | dict[Any, Any] | range | tuple[Any, ...] | None = ..., *, dtype: Literal['datetime64[Y]', 'datetime64[M]', 'datetime64[W]', 'datetime64[D]', 'datetime64[h]', 'datetime64[m]', 'datetime64[s]', 'datetime64[ms]', 'datetime64[us]', 'datetime64[μs]', 'datetime64[ns]', 'datetime64[ps]', 'datetime64[fs]', 'datetime64[as]', 'M8[Y]', 'M8[M]', 'M8[W]', 'M8[D]', 'M8[h]', 'M8[m]', 'M8[s]', 'M8[ms]', 'M8[us]', 'M8[μs]', 'M8[ns]', 'M8[ps]', 'M8[fs]', 'M8[as]', '<M8[Y]', '<M8[M]', '<M8[W]', '<M8[D]', '<M8[h]', '<M8[m]', '<M8[s]', '<M8[ms]', '<M8[us]', '<M8[μs]', '<M8[ns]', '<M8[ps]', '<M8[fs]', '<M8[as]', 'date32[pyarrow]', 'date64[pyarrow]', 'timestamp[s][pyarrow]', 'timestamp[ms][pyarrow]', 'timestamp[us][pyarrow]', 'timestamp[ns][pyarrow]'] = ..., name: Hashable = ..., copy: bool = ...) -> TimestampSeries
scratch.py:3: note:     def [S1] Series(data: ExtensionArray | ndarray[Any, Any] | dict[str, ndarray[Any, Any]] | Sequence[Any] | IndexOpsMixin[Any], index: Index[Any] | Series[Any] | ndarray[Any, Any] | list[Any] | dict[Any, Any] | range | tuple[Any, ...] | None = ..., *, dtype: Literal['datetime64[Y]', 'datetime64[M]', 'datetime64[W]', 'datetime64[D]', 'datetime64[h]', 'datetime64[m]', 'datetime64[s]', 'datetime64[ms]', 'datetime64[us]', 'datetime64[μs]', 'datetime64[ns]', 'datetime64[ps]', 'datetime64[fs]', 'datetime64[as]', 'M8[Y]', 'M8[M]', 'M8[W]', 'M8[D]', 'M8[h]', 'M8[m]', 'M8[s]', 'M8[ms]', 'M8[us]', 'M8[μs]', 'M8[ns]', 'M8[ps]', 'M8[fs]', 'M8[as]', '<M8[Y]', '<M8[M]', '<M8[W]', '<M8[D]', '<M8[h]', '<M8[m]', '<M8[s]', '<M8[ms]', '<M8[us]', '<M8[μs]', '<M8[ns]', '<M8[ps]', '<M8[fs]', '<M8[as]', 'date32[pyarrow]', 'date64[pyarrow]', 'timestamp[s][pyarrow]', 'timestamp[ms][pyarrow]', 'timestamp[us][pyarrow]', 'timestamp[ns][pyarrow]'], name: Hashable = ..., copy: bool = ...) -> TimestampSeries
scratch.py:3: note:     def [S1] Series(data: PeriodIndex, index: Index[Any] | Series[Any] | ndarray[Any, Any] | list[Any] | dict[Any, Any] | range | tuple[Any, ...] | None = ..., *, dtype: PeriodDtype = ..., name: Hashable = ..., copy: bool = ...) -> PeriodSeries
scratch.py:3: note:     def [S1] Series(data: TimedeltaIndex | Sequence[timedelta64 | timedelta] | timedelta64 | timedelta, index: Index[Any] | Series[Any] | ndarray[Any, Any] | list[Any] | dict[Any, Any] | range | tuple[Any, ...] | None = ..., *, dtype: Literal['timedelta64[Y]', 'timedelta64[M]', 'timedelta64[W]', 'timedelta64[D]', 'timedelta64[h]', 'timedelta64[m]', 'timedelta64[s]', 'timedelta64[ms]', 'timedelta64[us]', 'timedelta64[μs]', 'timedelta64[ns]', 'timedelta64[ps]', 'timedelta64[fs]', 'timedelta64[as]', 'm8[Y]', 'm8[M]', 'm8[W]', 'm8[D]', 'm8[h]', 'm8[m]', 'm8[s]', 'm8[ms]', 'm8[us]', 'm8[μs]', 'm8[ns]', 'm8[ps]', 'm8[fs]', 'm8[as]', '<m8[Y]', '<m8[M]', '<m8[W]', '<m8[D]', '<m8[h]', '<m8[m]', '<m8[s]', '<m8[ms]', '<m8[us]', '<m8[μs]', '<m8[ns]', '<m8[ps]', '<m8[fs]', '<m8[as]', 'duration[s][pyarrow]', 'duration[ms][pyarrow]', 'duration[us][pyarrow]', 'duration[ns][pyarrow]'] = ..., name: Hashable = ..., copy: bool = ...) -> TimedeltaSeries
scratch.py:3: note:     def [S1, _OrderableT] Series(data: IntervalIndex[Interval[_OrderableT]] | Interval[_OrderableT] | Sequence[Interval[_OrderableT]], index: Index[Any] | Series[Any] | ndarray[Any, Any] | list[Any] | dict[Any, Any] | range | tuple[Any, ...] | None = ..., *, dtype: Literal['Interval'] = ..., name: Hashable = ..., copy: bool = ...) -> IntervalSeries[_OrderableT]
scratch.py:3: note:     def [S1] Series(data: str | bytes | date | datetime | timedelta | datetime64 | timedelta64 | bool | int | float | Timestamp | Timedelta | complex | ExtensionArray | ndarray[Any, Any] | dict[str, ndarray[Any, Any]] | Sequence[Any] | IndexOpsMixin[Any] | dict[int, Any] | dict[str, Any] | None, index: Index[Any] | Series[Any] | ndarray[Any, Any] | list[Any] | dict[Any, Any] | range | tuple[Any, ...] | None = ..., *, dtype: type[S1], name: Hashable = ..., copy: bool = ...) -> Series[S1]
scratch.py:3: note:     def [S1] Series(data: S1 | ExtensionArray | ndarray[Any, Any] | dict[str, ndarray[Any, Any]] | Sequence[S1] | IndexOpsMixin[S1] | dict[int, S1] | dict[str, S1], index: Index[Any] | Series[Any] | ndarray[Any, Any] | list[Any] | dict[Any, Any] | range | tuple[Any, ...] | None = ..., *, dtype: ExtensionDtype | str | dtype[generic] | type[str] | type[complex] | type[bool] | type[object] = ..., name: Hashable = ..., copy: bool = ...) -> Series[S1]
scratch.py:3: note:     def [S1] Series(data: str | bytes | date | datetime | timedelta | datetime64 | timedelta64 | bool | int | float | Timestamp | Timedelta | complex | ExtensionArray | ndarray[Any, Any] | dict[str, ndarray[Any, Any]] | Sequence[Any] | IndexOpsMixin[Any] | dict[int, Any] | dict[str, Any] | None = ..., index: Index[Any] | Series[Any] | ndarray[Any, Any] | list[Any] | dict[Any, Any] | range | tuple[Any, ...] | None = ..., *, dtype: ExtensionDtype | str | dtype[generic] | type[str] | type[complex] | type[bool] | type[object] = ..., name: Hashable = ..., copy: bool = ...) -> Series[Any]
Found 1 error in 1 file (checked 1 source file)

Please complete the following information:

  • OS: [e.g. Windows, Linux, MacOS]: Ubuntu
  • OS Version [e.g. 22]: 20.04.6 LTS
  • python version: 3.11.6
  • version of type checker: mypy 1.6.1
  • version of installed pandas-stubs: 2.1.1.230928

Additional context
Add any other context about the problem here.

@Dr-Irv
Copy link
Collaborator

Dr-Irv commented Nov 6, 2023

While the documentation does say "Iterable", not all iterables are accepted. For example, a set is not accepted. The keys() method acts like a set from a typing perspective. So while passing keys() to Series() works, it's not a best practice.

There is an open issue on the pandas repo where I brought up whether we want to accept dictionary views: pandas-dev/pandas#55425 (comment)

I will leave this open for now, but I don't think we are going to support this.

@Dr-Irv
Copy link
Collaborator

Dr-Irv commented Nov 6, 2023

Created a new issue for pandas: pandas-dev/pandas#55842

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants