forked from osDFS/osDFS-Chatbot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimplechatbot.py
144 lines (100 loc) · 3.02 KB
/
simplechatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
"""simpleChatBot.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1pdgihANcHAqVG68kcd8N73zFjOHPGHGA
"""
import nltk
from nltk.stem.lancaster import LancasterStemmer
# nltk.download('punkt')
stemmer = LancasterStemmer()
import numpy as np
import random
import json
import tensorflow
import tflearn
import pickle
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docsx = []
docsy = []
for intent in data['intents']:
for pattern in intent['patterns']:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docsx.append(wrds)
docsy.append(intent['tag'])
if(intent['tag'] not in labels):
labels.append(intent['tag'])
words = [stemmer.stem(w.lower()) for w in words if w != '?']
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
# print(out_empty)
# print(words)
# print(docsx)
# print(len(words))
for x, doc in enumerate(docsx):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
outputrow = out_empty[:]
outputrow[labels.index(docsy[x])] = 1
training.append(bag)
output.append(outputrow)
# print(labels)
# print(training)
# print(output)
# print(docsx)
# print(docsy)
training = np.array(training)
output = np.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chat():
print("Start talking with the bot (type quit to stop)!")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])
results_index = np.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
print(random.choice(responses))
chat()