diff --git a/doc/1-main.dox b/doc/1-main.dox index 6ab28a98..4275fe47 100644 --- a/doc/1-main.dox +++ b/doc/1-main.dox @@ -160,7 +160,7 @@ optimization algorithms \cite PG2009 . To overcome this problem a multiscale parameter regionalization (MPR) was employed in the mHM model \cite SKA2010 . -\image html upscaling.png "MPR" +\image html upscaling.pdf "MPR" \anchor fig_mpr \image latex upscaling.pdf "MPR" width=10cm Based on this regionalization method, model parameters at a coarser diff --git a/doc/3-data_preparation.dox b/doc/3-data_preparation.dox index 99c400bd..0048cd1c 100644 --- a/doc/3-data_preparation.dox +++ b/doc/3-data_preparation.dox @@ -258,18 +258,18 @@ In the following paragraphs a possible GIS workflow is outlined using the softwa \arg As the spatial discretizations (i.e. resolutions, origin) of your datasets will most likely differ, it is recommended to set the following envirnmental settings on every processing step outlined in the following paragraphs. - \image html environments.png "Button 'Environments...' in all Toolbox windows" - \anchor fig_environments \image latex environments.png "Button 'Environments...' in all Toolbox windows" width=14cm + \image html environments.pdf "Button 'Environments...' in all Toolbox windows" + \anchor fig_environments \image latex environments.pdf "Button 'Environments...' in all Toolbox windows" width=14cm Point to the largest of your input data grids in 'Extent' and 'Snap Raster', which is usually the dataset with the coarsest horizontal resolution. In the likely case, that this is your meteorological input, create a grid from any of your netcdf-files first. - \image html netcdf_to_raster.png "System Toolboxes -> Multidimension Tools -> Make NetCDF Raster Layer" - \anchor fig_netcdf_to_raster \image latex netcdf_to_raster.png "System Toolboxes -> Multidimension Tools -> Make NetCDF Raster Layer" width=14cm + \image html netcdf_to_raster.pdf "System Toolboxes -> Multidimension Tools -> Make NetCDF Raster Layer" + \anchor fig_netcdf_to_raster \image latex netcdf_to_raster.pdf "System Toolboxes -> Multidimension Tools -> Make NetCDF Raster Layer" width=14cm Save the output grid (right click the raster in the 'Table of Contents' -> 'Data' -> 'Export Data...'). \arg If the map projections of your datasets differ, a harmonization of these becomes necessary. Repeat the depicted step to convert all your input files. Which projection to choose is highly dependent on your simulation domain and size. For the current model version an equal-area projection is strongly recommended. - \image html project.png "System Toolboxes -> Data Management Tools -> Projections and Transformations -> Raster -> Project Raster" - \anchor fig_project \image latex project.png "System Toolboxes -> Data Management Tools -> Projections and Transformations -> Raster -> Project Raster" width=14cm + \image html project.pdf "System Toolboxes -> Data Management Tools -> Projections and Transformations -> Raster -> Project Raster" + \anchor fig_project \image latex project.pdf "System Toolboxes -> Data Management Tools -> Projections and Transformations -> Raster -> Project Raster" width=14cm \arg If your input datasets are not already in the desired level-0 resolution, resample the DEM, the hydrogeological, LAI, soil and land use maps. Choosing an appropiate resolution depends on data quality and needed level of simulation detail, but keep in mind that: @@ -279,32 +279,32 @@ In the following paragraphs a possible GIS workflow is outlined using the softwa 2. Model runtime directly depends on the number of grid cells. - \image html resample.png "System Toolboxes -> Data Management Tools -> Raster -> Raster Processing -> Resample" - \anchor fig_resample \image latex resample.png "System Toolboxes -> Data Management Tools -> Raster -> Raster Processing -> Resample" width=14cm + \image html resample.pdf "System Toolboxes -> Data Management Tools -> Raster -> Raster Processing -> Resample" + \anchor fig_resample \image latex resample.pdf "System Toolboxes -> Data Management Tools -> Raster -> Raster Processing -> Resample" width=14cm \arg It is important that all your morphological input files exactly cover the same spatial domain. That also means that if a cell contains valid data in any one of the datasets, the very same cell must also be definied in all the others. One possibility to solve this typical problem would be to set such 'doubtful' cells to the corresponding NODATA_value. Therefore create a mask as depicted below, which only contains cells, that are defined everywhere. - \image html data_mask.png "System Toolboxes -> Spatial Analyst Tools -> Map Algebra -> Raster Calculator" - \anchor fig_data_mask \image latex data_mask.png "System Toolboxes -> Spatial Analyst Tools -> Map Algebra -> Raster Calculator" width=14cm + \image html data_mask.pdf "System Toolboxes -> Spatial Analyst Tools -> Map Algebra -> Raster Calculator" + \anchor fig_data_mask \image latex data_mask.pdf "System Toolboxes -> Spatial Analyst Tools -> Map Algebra -> Raster Calculator" width=14cm \arg Mask all the mentioned datasets with the output of the 'Raster Calculator' follwing the procedure described in \ref mask of this tutorial. In case the described processing step is necessary, accomplish it before you reach subsection \ref hydro ! Masking these maps would most likely disturb the hydrological properties of your catchment data and result in unexpected model behaviour. \subsection slope Slope map - \image html slope.png "System Toolboxes -> Spatial Analyst Tools -> Surface -> Slope" - \anchor fig_slope \image latex slope.png "System Toolboxes -> Spatial Analyst Tools -> Surface -> Slope" width=14cm + \image html slope.pdf "System Toolboxes -> Spatial Analyst Tools -> Surface -> Slope" + \anchor fig_slope \image latex slope.pdf "System Toolboxes -> Spatial Analyst Tools -> Surface -> Slope" width=14cm \subsection aspect Aspect map - \image html aspect.png "System Toolboxes -> Spatial Analyst Tools -> Surface -> Aspect" - \anchor fig_aspect \image latex aspect.png "System Toolboxes -> Spatial Analyst Tools -> Surface -> Aspect" width=14cm + \image html aspect.pdf "System Toolboxes -> Spatial Analyst Tools -> Surface -> Aspect" + \anchor fig_aspect \image latex aspect.pdf "System Toolboxes -> Spatial Analyst Tools -> Surface -> Aspect" width=14cm \subsection fill Fill DEM sinks - \image html fill.png "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Fill" - \anchor fig_fill \image latex fill.png "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Fill" width=14cm + \image html fill.pdf "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Fill" + \anchor fig_fill \image latex fill.pdf "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Fill" width=14cm \subsection hydro Flow direction and flow accumulation @@ -316,12 +316,12 @@ In the following paragraphs a possible GIS workflow is outlined using the softwa If a high quality DEM, with a resolution fine enough to represent small scale river morphology is available, you may calculate flow direction and flow accumulation directly. \arg Flow Directon - \image html fdir.png "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Flow Direction" - \anchor fig_fdir \image latex fdir.png "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Flow Direction" width=14cm + \image html fdir.pdf "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Flow Direction" + \anchor fig_fdir \image latex fdir.pdf "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Flow Direction" width=14cm \arg Flow Accumulation - \image html facc.png "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Flow Accumulation" - \anchor fig_facc \image latex facc.png "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Flow Accumulation" width=14cm + \image html facc.pdf "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Flow Accumulation" + \anchor fig_facc \image latex facc.pdf "System Toolboxes -> Spatial Analyst Tools -> Hydrology -> Flow Accumulation" width=14cm \subsubsection arc_hydro_tools Arc Hydro Tools @@ -329,28 +329,28 @@ Using the Arc Hydro Tools is recommended in case of doubtful DEM quality and/or \arg In a first step the original DEM must be reconditioned, i.e. the given altitudes will be reassigned in dependence of a stream network. The latter must be given as a Line Shapefile. In case the necessary stream network file is not available, you can get one from the USGS HydroSHEDS download portal http://hydrosheds.cr.usgs.gov/dataavail.php. - \image html hydro_agree.png "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> DEM Reconditioning" - \anchor fig_agree \image latex hydro_agree.png "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> DEM Reconditioning" width=14cm + \image html hydro_agree.pdf "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> DEM Reconditioning" + \anchor fig_agree \image latex hydro_agree.pdf "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> DEM Reconditioning" width=14cm \arg Fill the sinks in the resulting reconditioned DEM - \image html hydro_fill.png "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Fill Sinks" - \anchor fig_hydro_fill \image latex hydro_fill.png "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Fill Sinks" width=14cm + \image html hydro_fill.pdf "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Fill Sinks" + \anchor fig_hydro_fill \image latex hydro_fill.pdf "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Fill Sinks" width=14cm \arg Calculate Flow Direction - \image html hydro_fdir.png "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Flow Direction" - \anchor fig_hydro_fdir \image latex hydro_fdir.png "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Flow Direction" width=14cm + \image html hydro_fdir.pdf "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Flow Direction" + \anchor fig_hydro_fdir \image latex hydro_fdir.pdf "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Flow Direction" width=14cm \arg Create a Flow Accumulation map - \image html hydro_facc.png "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Flow Accumulation" - \anchor fig_hydro_facc \image latex hydro_facc.png "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Flow Accumulation" width=14cm + \image html hydro_facc.pdf "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Flow Accumulation" + \anchor fig_hydro_facc \image latex hydro_facc.pdf "System Toolboxes -> Arc Hydro Tools -> Terrain Preprocessing -> Flow Accumulation" width=14cm \subsection gauges Gauges map \arg Assuming that you have the positions of your gauges in a table, which has at least the colums x, y, id (in any order and/or amongst other columns), you are able to to convert your data into a Point Shapefile. Choose the appropiate fields and do not forget to set the coordinate system information. - \image html xy_gauges.png "Right click on the table in Arc Catalog - > Create Feature Class -> From XY Table" - \anchor fig_xy_gauges \image latex xy_gauges.png "Right click on the table in Arc Catalog - > Create Feature Class -> From XY Table" width=8cm + \image html xy_gauges.pdf "Right click on the table in Arc Catalog - > Create Feature Class -> From XY Table" + \anchor fig_xy_gauges \image latex xy_gauges.pdf "Right click on the table in Arc Catalog - > Create Feature Class -> From XY Table" width=8cm \arg Check the positions of your gauges against the previously created Flow Accumulation map. If the points do not exactly match the stream-like features on the Flow Accumulation grid, @@ -358,12 +358,12 @@ In case the necessary stream network file is not available, you can get one from facilitate this step (i.e. right click the Flow Accumulation map in the Table of Contents -> Properties -> Tab 'Symbology' -> Choose 'Stretched' in the 'Show' box on the left hand side and Type 'Standard Deviations' in the center box. It might also be necessary to invert the color ramp by (un-)checking the 'Invert' check box). Remember to stop the editing process and save your edits (Editor Toolbar -> Editor -> Stop Editing). - \image html move_gauge.png "Mismatching gauges (left) should be replaced (right)" - \anchor fig_move_gauge \image latex move_gauge.png "Mismatching gauges (left) should be corrected (right)" width=14cm + \image html move_gauge.pdf "Mismatching gauges (left) should be replaced (right)" + \anchor fig_move_gauge \image latex move_gauge.pdf "Mismatching gauges (left) should be corrected (right)" width=14cm \arg Convert the resulting shapefile into an raster map with level-0 resolution. - \image html point_to_raster.png "System Toolboxes -> Conversion Tools -> To Raster -> Point to Raster" - \anchor fig_point_to_raster \image latex point_to_raster.png "System Toolboxes -> Conversion Tools -> To Raster -> Point to Raster" width=14cm + \image html point_to_raster.pdf "System Toolboxes -> Conversion Tools -> To Raster -> Point to Raster" + \anchor fig_point_to_raster \image latex point_to_raster.pdf "System Toolboxes -> Conversion Tools -> To Raster -> Point to Raster" width=14cm \subsection watershed Watershed delineation @@ -372,20 +372,20 @@ In case the necessary stream network file is not available, you can get one from the unedited file, create a copy of the original Shapefile before editing it. \arg Delineate the basin - \image html basin.png "System Toolboxes -> Spatial Analyst -> Hydrology -> Watershed" - \anchor fig_basin \image latex basin.png "System Toolboxes -> Spatial Analyst -> Hydrology -> Watershed" width=14cm + \image html basin.pdf "System Toolboxes -> Spatial Analyst -> Hydrology -> Watershed" + \anchor fig_basin \image latex basin.pdf "System Toolboxes -> Spatial Analyst -> Hydrology -> Watershed" width=14cm \subsection mask Mask the datasets Mask all mHM input raster files with the created watershed mask - \image html mask.png "System Toolboxes -> Spatial Analysis Tools > Extraction > Extract by Mask" - \anchor fig_mask \image latex mask.png "System Toolboxes -> Spatial Analysis Tools > Extraction > Extract by Mask" width=14cm + \image html mask.pdf "System Toolboxes -> Spatial Analysis Tools > Extraction > Extract by Mask" + \anchor fig_mask \image latex mask.pdf "System Toolboxes -> Spatial Analysis Tools > Extraction > Extract by Mask" width=14cm \subsection format Write the ascii grids Convert the processed and masked raster maps into ASCII files - \image html ascii.png "System Toolboxes -> Conversion Tools -> From Raster -> Raster to ASCII" - \anchor fig_ascii \image latex ascii.png "System Toolboxes -> Conversion Tools -> From Raster -> Raster to ASCII" width=14cm + \image html ascii.pdf "System Toolboxes -> Conversion Tools -> From Raster -> Raster to ASCII" + \anchor fig_ascii \image latex ascii.pdf "System Toolboxes -> Conversion Tools -> From Raster -> Raster to ASCII" width=14cm \section lcover Land Cover Data @@ -412,8 +412,8 @@ files are presented. All fields are further listed and described in the repectiv \subsection soil_table The soil look-up table -\image html soil_classdefinition.png "A possible 'soil_classdefinion.txt' file" -\anchor fig_soil_classdefinition \image latex soil_classdefinition.png "A possible 'soil_classdefinion.txt' file" width=16cm +\image html soil_classdefinition.pdf "A possible 'soil_classdefinion.txt' file" +\anchor fig_soil_classdefinition \image latex soil_classdefinition.pdf "A possible 'soil_classdefinion.txt' file" width=16cm Field | Description ----------|--------------------- @@ -427,8 +427,8 @@ BD[gcm-3] | Mineral bulk density in grams per cubic centimeter \subsection hydrogeo_table The hydrogeolgy look-up table -\image html geology_classdefinition.png "A possible 'geology_classdefinion.txt' file" -\anchor fig_geology_classdefinition \image latex geology_classdefinition.png "A possible 'geology_classdefinion.txt' file" width=16cm +\image html geology_classdefinition.pdf "A possible 'geology_classdefinion.txt' file" +\anchor fig_geology_classdefinition \image latex geology_classdefinition.pdf "A possible 'geology_classdefinion.txt' file" width=16cm Field | Description -------------|--------------------- @@ -439,8 +439,8 @@ Description | Text description of the unit \subsection lai_table The LAI look-up table -\image html lai_classdefinition.png "A possible 'LAI_classdefinion.txt' file" -\anchor fig_lai_classdefinition \image latex lai_classdefinition.png "A possible 'LAI_classdefinion.txt' file" width=16cm +\image html lai_classdefinition.pdf "A possible 'LAI_classdefinion.txt' file" +\anchor fig_lai_classdefinition \image latex lai_classdefinition.pdf "A possible 'LAI_classdefinion.txt' file" width=16cm Field | Description @@ -451,8 +451,8 @@ Jan. to Dec. | Monthly LAI values \subsection gauge_files The gauge files -\image html gauge.png "A possible gauge file" -\anchor gauge \image latex gauge.png "A possible gauge file" width=16cm +\image html gauge.pdf "A possible gauge file" +\anchor gauge \image latex gauge.pdf "A possible gauge file" width=16cm The structure of the gauge files is different from the look-up tables listed diff --git a/doc/7-test_basin.dox b/doc/7-test_basin.dox index a26738d8..3e4ae756 100644 --- a/doc/7-test_basin.dox +++ b/doc/7-test_basin.dox @@ -50,10 +50,10 @@ Commission for providing the European soil database. \n for providing the CORINE land cover dataset. \n (http://www.eea.europa.eu/publications/COR0-landcover -- 15.04.2014) -\image html moselle_eu_location.png "Location of the Moselle River basin upstream of Perl within the European domain" +\image html moselle_eu_location.pdf "Location of the Moselle River basin upstream of Perl within the European domain" \anchor fig_moselle_eu_location \image latex moselle_eu_location.pdf "Location of the Moselle River basin upstream of Perl within the European domain" width=10cm -\image html moselle_dem.png "Digital elevation model for the Moselle River basin upstream of Perl" +\image html moselle_dem.pdf "Digital elevation model for the Moselle River basin upstream of Perl" \anchor fig_moselle_dem \image latex moselle_dem.pdf "Digital elevation model for the Moselle River basin upstream of Perl" width=10cm */