-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshape_of_sort.py
341 lines (283 loc) · 9.02 KB
/
shape_of_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import math
from random import shuffle
import PIL.Image
import numpy as np
import tabulate
algorithms = {}
def add_alg(func):
"""Decorator that adds the decorated function to a dictionary of algorithms.
:param func: A function that takes a list of comparable values.
:return: The function that was passed in.
"""
global algorithms
fname = func.__name__
algorithms[fname] = func
return func
@add_alg
def radix_sort_lsd(cells):
"""Radix sort operates by grouping keys by their radix positions."""
trace = [cells[:]]
compares = []
base = 7
def combine_buckets(buckets, cells=[]):
"""Concatenates the buckets, returning a concatenated list.
:type buckets: list of lists
:returns: list
"""
concatenated = []
for bucket in buckets:
concatenated.extend(bucket)
concatenated.extend(cells)
return concatenated
def get_digit_at_radix_position(value, postion):
"""Radix position 0 is the 1s position. While 1 is the 10s, and 2 is the 100s, and n is the 10**n
"""
radix_position = base ** postion
return (value // radix_position) % base
# Find number of merge cycles
n_radix_positions = 0
for x in cells:
try:
digits = math.floor(math.log(x) / math.log(base)) + 1
except ValueError:
digits = 1
if digits > n_radix_positions:
n_radix_positions = digits
for position in range(n_radix_positions):
buckets = []
for x in range(base):
buckets.append(list())
for index, cell in enumerate(cells):
buckets[get_digit_at_radix_position(cell, position)].append(cell)
compares.append([index, index])
glommed = combine_buckets(buckets, cells[index + 1:])
trace.append(glommed)
cells = combine_buckets(buckets)
return trace, compares
@add_alg
def quicksort_hoare(cells):
"""Implement Hoare's version of quicksort"""
trace = [cells[:]]
compares = []
def partition(A, lo, hi):
"""Hoare partition scheme"""
pivot_index = (hi + lo) // 2
pivot = A[pivot_index]
i = lo - 1
j = hi + 1
while True:
i = i + 1
compares.append([i, pivot_index])
while A[i] < pivot:
i = i + 1
j = j - 1
compares.append([j, pivot_index])
while A[j] > pivot:
j = j - 1
if i >= j:
return j
A[i], A[j] = A[j], A[i]
trace.append(A[:])
def qsort(A, lo, hi):
if lo >= 0 and hi >= 0 and lo < hi:
p = partition(A, lo, hi)
if (p - lo) < (hi - (p + 1)):
qsort(A, lo, p)
qsort(A, p + 1, hi)
else:
qsort(A, p + 1, hi)
qsort(A, lo, p)
qsort(cells, 0, len(cells) - 1)
return trace, compares
@add_alg
def quicksort_lomuto(cells):
"""Implement Lomuto's version of quicksort"""
trace = [cells[:]]
compares = []
def partition(A, lo, hi):
"""Lomuto partition scheme"""
pivot = A[hi]
i = lo - 1
for j in range(lo, hi):
compares.append([j, hi])
if A[j] <= pivot:
i += 1
A[i], A[j] = A[j], A[i]
trace.append(A[:])
i += 1
A[i], A[hi] = A[hi], A[i]
trace.append(A[:])
return i
def qsort(A, lo, hi):
if lo >= hi or lo < 0:
return
p = partition(A, lo, hi)
if ((p - 1) - lo) < (hi - (p + 1)):
qsort(A, lo, p - 1)
qsort(A, p + 1, hi)
else:
qsort(A, p + 1, hi)
qsort(A, lo, p - 1)
qsort(cells, 0, len(cells) - 1)
return trace, compares
def prepare_data(n_cells, reverse=False, shuffled=True):
cells = list(range(n_cells))
if reverse:
cells.reverse()
if shuffled:
shuffle(cells)
return cells
@add_alg
def heapsort(cells):
trace = [cells[:]]
compares = []
def pushdown(data, start, end, trace):
"""
Push the element in data @ start down into the maxheap
:param data: the array being heap fixed
:param start: the node index we start at.
"""
root = start
while (child := (2 * root + 1)) <= end:
if child + 1 <= end and data[child] < data[child + 1]:
compares.append([child, child + 1])
child += 1
if data[root] < data[child]:
data[root], data[child] = data[child], data[root]
compares.append([root, child])
trace.append(data[:])
root = child
else:
return
# heapify
end = len(cells) - 1
start = (end - 1) // 2
while start >= 0:
pushdown(cells, start, end, trace)
start -= 1
while end > 0:
cells[0], cells[end] = cells[end], cells[0]
trace.append(cells[:])
end -= 1
pushdown(cells, 0, end, trace)
return trace, compares
@add_alg
def merge(cells):
trace = [cells[:]]
compares = []
n = len(cells)
def combine(left, right, end):
i = left
j = right
for k in range(left, end):
if i < right and j < end:
compares.append([i, j])
if i < right and (j >= end or source[i] <= source[j]):
dest[k] = source[i]
i += 1
else:
dest[k] = source[j]
j += 1
trace.append(dest[:])
source = cells[:]
dest = cells[:]
width = 1
while width < n:
i = 0
while i < n:
combine(i, min(i + width, n), min(i + 2 * width, n))
i += (2 * width)
source, dest = dest, source
# trace.append(source[:])
width *= 2
return trace, compares
@add_alg
def bubble(cells):
trace = [cells[:]]
compares = []
swap = True
n = len(cells)
while swap:
swap = False
for i in range(1, n):
compares.append([i - 1, i])
if cells[i - 1] > cells[i]:
cells[i - 1], cells[i] = cells[i], cells[i - 1]
swap = True
trace.append(cells[:])
n -= 1
# if swap:
# trace.append(cells[:])
return trace, compares
@add_alg
def insertion(cells):
trace = [cells[:]]
compares = []
n = len(cells)
i = 1
while i < n:
j = i
compares.append([j - 1, j])
while j > 0 and cells[j - 1] > cells[j]:
cells[j], cells[j - 1] = cells[j - 1], cells[j]
trace.append(cells[:])
j -= 1
if j > 0:
compares.append([j - 1, j])
i += 1
return trace, compares
@add_alg
def selection(cells):
trace = [cells[:]]
compares = []
n = len(cells)
for i in range(n):
swap = False
minimum_index = i
for j in range(i + 1, n):
compares.append([j, minimum_index])
if cells[j] < cells[minimum_index]:
minimum_index = j
if i != minimum_index:
cells[i], cells[minimum_index] = cells[minimum_index], cells[i]
trace.append(cells[:])
swap = True
# if swap:
# trace.append(cells[:])
return trace, compares
def render(history, destination):
n_cells = len(history[0])
destination.write('digraph g{ graph [rankdir="LR", ranksep=2 ];\n')
for step, cells in enumerate(history):
struct = "|".join(f"<f{i}> {i}" for i in cells)
destination.write(f'"node{step}" [ label="{struct}" shape="record"];\n')
for i in range(1, len(history)):
for j in range(n_cells):
destination.write(f'"node{i - 1}":f{j} -> "node{i}":f{j};\n')
destination.write("}\n")
def main():
n_cells = 64
report = []
start_data = prepare_data(n_cells, shuffled=False, reverse=True)
for alg_name in algorithms.keys():
trace, compares = algorithms[alg_name](start_data[:])
# with open(f"{alg_name}.dot", 'w') as dest:
# render(trace, dest)
memory = np.zeros((len(trace), n_cells, 3), dtype="uint8")
for row, cols in enumerate(trace):
cols = np.array(cols)
memory[row, :, 0] = cols / n_cells * 256
memory[row, :, 1] = cols / n_cells * 256
memory[row, :, 2] = cols / n_cells * 256
img = PIL.Image.fromarray(memory, mode="RGB")
img = img.convert("RGB")
img.save(f"{alg_name}_{n_cells}_memory.png")
checks = np.zeros((len(compares), n_cells), dtype=bool)
for row, cols in enumerate(compares):
checks[row, cols] = 1
img = PIL.Image.fromarray(checks)
img.save(f"{alg_name}_{n_cells}_compares.png")
report.append({'Algorit hm': alg_name, 'Compares': len(checks), 'Assignments': len(trace)})
print(tabulate.tabulate(report, headers='keys'))
if "__main__" == __name__:
main()