-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
51 lines (37 loc) · 1.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python
import os.path as osp
import pytorch_lightning as pl
import torch
import hydra
from omegaconf import OmegaConf
from fromage.data import MIMICDataModule, CaptionDataModule
from fromage.experiment import Experiment
from fromage.utils import create_callbacks, create_logger, save_config
CONFIG_DIR = osp.abspath(osp.join(__file__, "..", "config"))
@hydra.main(version_base=None, config_path=CONFIG_DIR, config_name="train")
def main(config):
config = OmegaConf.to_container(config)
config = pl.utilities.parsing.AttributeDict(config)
if "seed" in config:
pl.seed_everything(config["seed"])
print(config)
dataset_name = config["dataset"]["name"]
if dataset_name == "COCO":
dm = CaptionDataModule(config)
elif dataset_name == "MIMIC-CXR-JPG":
dm = MIMICDataModule(config)
logger = create_logger(config)
callbacks = None
logger_conf = config["logger"]
if logger is not None and logger_conf["version"] != "debug":
callbacks = create_callbacks(config, logger_conf["save_dir"])
save_config(config, logger_conf["save_dir"])
experiment = Experiment(config)
trainer = pl.Trainer(
logger=logger,
callbacks=callbacks,
**config["trainer"])
trainer.fit(experiment, datamodule=dm)
trainer.test(experiment, datamodule=dm)
if __name__ == "__main__":
main()