forked from Helmholtz-AI-Energy/AI-HERO-Energy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_exploration.py
123 lines (91 loc) · 4.1 KB
/
data_exploration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from datetime import date
from tqdm import tqdm
import torch
pd.options.mode.chained_assignment = None
verbose = False
df = pd.read_csv("/hkfs/work/workspace/scratch/bh6321-energy_challenge/data/train.csv", delimiter=",")
df["Year"] = [datetime.strptime(i, "%Y-%m-%d %H:%M:%S").year for i in df["Time [s]"]]
df["Date"] = [i.split(" ")[0] for i in df["Time [s]"]]
df["Week"] = [date(int(i.split("-")[0]), int(i.split("-")[1]), int(i.split("-")[2])).isocalendar()[1] for i in df["Date"]]
continous_weeks = []
len_first_week = df[(df.Year == 2015) & (df.Week == 1) & (df.City == "bs")].shape[0]
len_normal_week = df[(df.Year == 2015) & (df.Week == 2) & (df.City == "bs")].shape[0]
week_dif = len_normal_week - len_first_week
count = 1
for i in range(df[df.City == "bs"].shape[0]):
if (i + week_dif) % len_normal_week == 0:
count += 1
continous_weeks.append(count)
df["Continous_week"] = 14*continous_weeks
# rolling 14 day window with city specific normalization
# averaging over all 14 city values
weeklevel = []
calenderweeklist = []
var_weeklevel = []
citynames = []
all_teh_data = []
for week in tqdm(df.Continous_week.unique()[:-1]):
df_week = df.loc[(df.Continous_week == week) | (df.Continous_week == week+1)]
calenderweek = df_week.Week.unique()[0]
calenderweeklist.append(calenderweek)
citylevel = []
for city in df_week.City.unique():
citynames.append(city)
df_city = df_week[df_week.City == city]
mean_, sd_ = df_city["Load [MWh]"].median(), df_city["Load [MWh]"].std()
upper, lower = mean_ + 3.5*sd_, mean_ - 3.5*sd_
sum_ = ((df_city["Load [MWh]"] < lower) | (df_city["Load [MWh]"] > upper)).sum()
df_city.loc[(df_city["Load [MWh]"] < lower), "Load [MWh]"] = lower
df_city.loc[(df_city["Load [MWh]"] > upper), "Load [MWh]"] = upper
if verbose and sum_ > 0:
print(f"Clipped {sum_} values for city {city} and week {week}.")
if verbose and sum_ > 5:
print(f"Warning for week {week} and city {city}. There were {sum_} outliers.")
min_, max_ = df_city[df_city.Continous_week == week]["Load [MWh]"].min(), df_city[df_city.Continous_week == week]["Load [MWh]"].max()
df_city["Load_norm"] = [(df_city["Load [MWh]"].iloc[i]-min_)/(max_ - min_)*2 - 1 for i in range(df_city.shape[0])]
week1 = df_city[df_city.Continous_week == week]["Load_norm"].mean()
week2 = df_city[df_city.Continous_week == week+1]["Load_norm"].mean()
delta_ = week2 - week1
citylevel.append(delta_)
all_teh_data.append([citylevel])
weeklevel.append(np.mean(citylevel))
var_weeklevel.append(np.std(citylevel))
df_deltas = pd.DataFrame({"Calenderweek":calenderweeklist, "Delta":weeklevel})
df_result = df_deltas.groupby(["Calenderweek"])["Delta"].agg([np.mean, np.std]).reset_index()
df_result["delta_cumsum"] = df_result["mean"].cumsum()
print(df_result)
seasonal_delta = torch.tensor(df_result["mean"], dtype=torch.float)
print(seasonal_delta)
fig, (ax1, ax2) = plt.subplots(2,1, sharex=True)
ax1.plot(df_result["mean"])
ax1.set_ylabel("Pre-week Delta")
ax1.grid()
ax2.plot(df_result["delta_cumsum"])
ax2.set_ylabel("Cumulative Sum")
ax2.set_xlabel("Calenderweek")
ax2.grid()
plt.subplots_adjust(wspace=0, hspace=0)
plt.savefig("deltas.png")
plt.close()
years = np.array([i-2015 for i in df.Year.unique()])
slopes = []
sections = []
for city in df.City.unique():
meansies = []
for year in df.Year.unique():
meansy = df[(df.City == city) | (df.Year == year)]["Load [MWh]"].mean()
meansies.append(meansy)
coefs = np.polyfit(years, meansies, deg=1)
print(coefs)
slopes.append(coefs[0])
sections.append(coefs[1])
cosmic_slope = torch.tensor(np.mean(slopes), dtype=torch.float)
cosmic_section = torch.tensor(np.mean(sections), dtype=torch.float)
print(cosmic_slope)
print(cosmic_section)
dict_parameters = {"seasonal_delta":seasonal_delta, "cosmic_slope":cosmic_slope, "cosmic_intersection":cosmic_section}
torch.save(dict_parameters, "naive_parameters.pt")