-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdql_quantum_pong.py
206 lines (164 loc) · 5.86 KB
/
dql_quantum_pong.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gym
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from datetime import datetime
import sys
from imagetranformer import ImageTransformer
from rl_common import ReplayMemory, update_state, learn
from dqn_model import DQN
from gym import wrappers
import cv2
import time
MAX_EXPERIENCE = 50000
MIN_EXPERIENCE = 5000
TARGET_UPDATE_PERIOD = 10000
IM_SIZE = 84
K = 3
n_history = 4
def play_ones(env,
sess,
total_t,
experience_replay_buffer,
model,
target_model,
image_transformer,
gamma,
batch_size,
epsilon,
epsilon_change,
epsilon_min,
pathOut,
record):
t0 = datetime.now()
obs = env.reset()
print(obs.shape)
obs_small = image_transformer.transform(obs, sess)
state = np.stack([obs_small] * n_history, axis = 2)
loss = None
total_time_training = 0
num_steps_in_episode = 0
episode_reward = 0
done = False
if record == True:
out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), 20.0, (640,480))
while not done:
if total_t % TARGET_UPDATE_PERIOD == 0:
target_model.copy_from(model)
print("model is been copied!")
action = model.sample_action(state, epsilon)
obs, reward, done, _ = env.step(action)
obs_small = image_transformer.transform(obs, sess)
next_state = update_state(state, obs_small)
episode_reward += reward
experience_replay_buffer.add_experience(action, obs_small, reward, done)
t0_2 = datetime.now()
loss = learn(model, target_model, experience_replay_buffer, gamma, batch_size)
dt = datetime.now() - t0_2
total_time_training += dt.total_seconds()
num_steps_in_episode += 1
state = next_state
total_t += 1
epsilon = max(epsilon - epsilon_change, epsilon_min)
if record == True:
frame = cv2.cvtColor(obs_small, cv2.COLOR_GRAY2BGR)
frame = cv2.resize(frame,(640,480))
out.write(frame)
#cv2.imshow("frame", frame)
if record == True:
out.release()
return total_t, episode_reward, (datetime.now()-t0), num_steps_in_episode, total_time_training/num_steps_in_episode, loss
def smooth(x):
n = len(x)
y = np.zeros(n)
for i in range(n):
start = max(0, i-99)
y[i] = float(x[start:(i+1)].sum())/(i-start+1)
return y
if __name__ == '__main__':
conv_layer_sizes = [(32,8,4), (64,4,2), (64,3,1)]
hidden_layer_sizes = [512]
gamma = 0.99
batch_sz = 32
num_episodes = 3500
total_t = 0
experience_replay_buffer = ReplayMemory()
episode_rewards = np.zeros(num_episodes)
episode_lens = np.zeros(num_episodes)
epsilon = 1.0
epsilon_min = 0.1
epsilon_change = (epsilon - epsilon_min) / 500000
env = gym.make('gym_quantum_pong:Quantum_Pong-v0')
#monitor_dir = 'video'
#env = wrappers.Monitor(env, monitor_dir)
model = DQN(
K = K,
conv_layer_sizes=conv_layer_sizes,
hidden_layer_sizes=hidden_layer_sizes,
scope="model",
image_size=IM_SIZE
)
target_model = DQN(
K = K,
conv_layer_sizes=conv_layer_sizes,
hidden_layer_sizes=hidden_layer_sizes,
scope="target_model",
image_size=IM_SIZE
)
image_transformer = ImageTransformer(IM_SIZE)
with tf.Session() as sess:
model.set_session(sess)
target_model.set_session(sess)
#model.load()
#target_model.load()
sess.run(tf.global_variables_initializer())
print("Initializing experience replay buffer...")
obs = env.reset()
for i in range(MIN_EXPERIENCE):
action = np.random.choice(K)
obs, reward, done, _ = env.step(action)
obs_small = image_transformer.transform(obs, sess)
experience_replay_buffer.add_experience(action, obs_small, reward, done)
if done:
obs = env.reset()
t0 = datetime.now()
record = True
for i in range(num_episodes):
video_path = 'video/Episode_'+str(i)+'.avi'
if i%50 == 0:
record = True
else:
record = False
total_t, episode_reward, duration, num_steps_in_episode, time_per_step, epsilon = play_ones(
env,
sess,
total_t,
experience_replay_buffer,
model,
target_model,
image_transformer,
gamma,
batch_sz,
epsilon,
epsilon_change,
epsilon_min,
video_path,
record)
episode_rewards[i] = episode_reward
episode_lens[i] = num_steps_in_episode
last_100_avg = episode_rewards[max(0,i-100):i+1].mean()
print("Episode:", i ,
"Duration:", duration,
"Num steps:", num_steps_in_episode,
"Reward:", episode_reward,
"Training time per step:", "%.3f" %time_per_step,
"Avg Reward:", "%.3f"%last_100_avg,
"Epsilon:", "%.3f"%epsilon)
sys.stdout.flush()
print("Total duration:", datetime.now()-t0)
model.save()
y = smooth(episode_rewards)
plt.plot(episode_rewards, label='orig')
plt.plot(y, label='smoothed')
plt.legend()
plt.show()