From 2ba5ede95daa2abfdb2026ec08f29f4e8a818f67 Mon Sep 17 00:00:00 2001
From: Joao P C Bertoldo <24547377+jpcbertoldo@users.noreply.github.com>
Date: Sun, 6 Oct 2024 08:43:49 +0200
Subject: [PATCH] Add pimo tutorial advanced i (fixed) (#2336)
* uset all padim features to make it deterministic
Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com>
* add aupimo notebook advanced i
Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com>
* update readme
Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com>
* modify changelog
Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com>
* correct readme
Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com>
* correct again
Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com>
* minor corrections
Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com>
---------
Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com>
---
CHANGELOG.md | 2 +
notebooks/700_metrics/701a_aupimo.ipynb | 68 +-
.../700_metrics/701b_aupimo_advanced_i.ipynb | 1433 +++++++++++++++++
notebooks/700_metrics/pimo_viz.svg | 619 +++++++
notebooks/README.md | 7 +
5 files changed, 2092 insertions(+), 37 deletions(-)
create mode 100644 notebooks/700_metrics/701b_aupimo_advanced_i.ipynb
create mode 100644 notebooks/700_metrics/pimo_viz.svg
diff --git a/CHANGELOG.md b/CHANGELOG.md
index fc80fa3e7e..e0e0cc955e 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -120,6 +120,8 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
### Added
+- Add `AUPIMO` tutorials notebooks in https://github.com/openvinotoolkit/anomalib/pull/2330 and https://github.com/openvinotoolkit/anomalib/pull/2336
+- Add `AUPIMO` metric by [jpcbertoldo](https://github.com/jpcbertoldo) in https://github.com/openvinotoolkit/anomalib/pull/1726 and refactored by [ashwinvaidya17](https://github.com/ashwinvaidya17) in https://github.com/openvinotoolkit/anomalib/pull/2329
- Add requirements into `pyproject.toml` & Refactor anomalib install `get_requirements` by @harimkang in https://github.com/openvinotoolkit/anomalib/pull/1808
### Changed
diff --git a/notebooks/700_metrics/701a_aupimo.ipynb b/notebooks/700_metrics/701a_aupimo.ipynb
index e6333df6df..c6831fd1f7 100644
--- a/notebooks/700_metrics/701a_aupimo.ipynb
+++ b/notebooks/700_metrics/701a_aupimo.ipynb
@@ -71,7 +71,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -177,7 +177,7 @@
"model = Padim(\n",
" # only use one layer to speed it up\n",
" layers=[\"layer1\"],\n",
- " n_features=32,\n",
+ " n_features=64,\n",
" backbone=\"resnet18\",\n",
" pre_trained=True,\n",
")"
@@ -225,7 +225,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "58335955473a43dab43e586caf66aa11",
+ "model_id": "880e325e4e4842b2b679340ca8007849",
"version_major": 2,
"version_minor": 0
},
@@ -242,9 +242,9 @@
"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
"┃ Test metric ┃ DataLoader 0 ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│ image_AUROC │ 0.9735053777694702 │\n",
- "│ image_F1Score │ 0.9518716335296631 │\n",
- "│ pixel_AUPIMO │ 0.6273086756193275 │\n",
+ "│ image_AUROC │ 0.9887908697128296 │\n",
+ "│ image_F1Score │ 0.9726775884628296 │\n",
+ "│ pixel_AUPIMO │ 0.7428419829089654 │\n",
"└───────────────────────────┴───────────────────────────┘\n",
"
\n"
],
@@ -252,9 +252,9 @@
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
- "│\u001b[36m \u001b[0m\u001b[36m image_AUROC \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.9735053777694702 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m image_F1Score \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.9518716335296631 \u001b[0m\u001b[35m \u001b[0m│\n",
- "│\u001b[36m \u001b[0m\u001b[36m pixel_AUPIMO \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6273086756193275 \u001b[0m\u001b[35m \u001b[0m│\n",
+ "│\u001b[36m \u001b[0m\u001b[36m image_AUROC \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.9887908697128296 \u001b[0m\u001b[35m \u001b[0m│\n",
+ "│\u001b[36m \u001b[0m\u001b[36m image_F1Score \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.9726775884628296 \u001b[0m\u001b[35m \u001b[0m│\n",
+ "│\u001b[36m \u001b[0m\u001b[36m pixel_AUPIMO \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7428419829089654 \u001b[0m\u001b[35m \u001b[0m│\n",
"└───────────────────────────┴───────────────────────────┘\n"
]
},
@@ -264,9 +264,9 @@
{
"data": {
"text/plain": [
- "[{'pixel_AUPIMO': 0.6273086756193275,\n",
- " 'image_AUROC': 0.9735053777694702,\n",
- " 'image_F1Score': 0.9518716335296631}]"
+ "[{'pixel_AUPIMO': 0.7428419829089654,\n",
+ " 'image_AUROC': 0.9887908697128296,\n",
+ " 'image_F1Score': 0.9726775884628296}]"
]
},
"execution_count": 8,
@@ -314,7 +314,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "678cb90805ee4b7bb1dd0c30944edab9",
+ "model_id": "e8116b80da39406e966c2099ecb2fdb1",
"version_major": 2,
"version_minor": 0
},
@@ -390,27 +390,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "tensor([8.7932e-01, 8.4367e-01, 7.9861e-02, 9.2154e-02, 1.5300e-04, 5.8312e-01,\n",
- " 8.5351e-01, 3.8730e-01, 1.9997e-02, 1.7658e-01, 8.0739e-01, 7.1827e-01,\n",
- " 5.2631e-01, 4.3051e-01, 5.0168e-01, 3.5604e-01, 8.9605e-01, 8.8349e-02,\n",
- " 6.0475e-01, 9.6092e-01, 5.8595e-01, 5.7159e-01, 9.8821e-01, 8.8012e-01,\n",
- " 5.8205e-01, 9.9295e-01, 1.0000e+00, 9.9967e-01, 5.5366e-01, 8.7399e-01,\n",
- " 7.0559e-01, 9.4203e-01, 7.3299e-01, 6.6430e-01, 8.0979e-01, 9.4388e-01,\n",
- " 9.9854e-01, 5.8814e-01, 8.8821e-01, 6.3341e-01, 4.2244e-01, 7.3422e-01,\n",
- " 4.4623e-01, 5.9982e-01, 1.1232e-01, 2.5705e-01, 3.2403e-01, 5.6662e-02,\n",
- " 5.3151e-02, 3.1629e-01, 2.6974e-01, 2.8646e-01, 5.3762e-01, 4.5617e-01,\n",
- " 4.4067e-01, 9.8349e-01, 1.2953e-02, 7.9532e-01, 1.7765e-01, 1.1363e-01,\n",
- " 9.7337e-01, 4.9871e-01, 2.7917e-01, 4.9118e-01, 2.5533e-02, 0.0000e+00,\n",
- " 9.0295e-04, 0.0000e+00, 9.3272e-01, 1.0000e+00, 1.0000e+00, 3.0749e-02,\n",
- " 8.0794e-01, 9.4464e-01, nan, nan, nan, nan,\n",
- " nan, nan, nan, nan, nan, nan,\n",
- " nan, nan, nan, nan, nan, nan,\n",
- " nan, nan, nan, nan, nan, nan,\n",
- " nan, nan, nan, nan, nan, nan,\n",
- " nan, nan, nan, nan, 9.8743e-01, 8.4611e-01,\n",
- " 9.7309e-01, 9.8823e-01, 1.0000e+00, 1.0000e+00, 9.6653e-01, 9.6560e-01,\n",
- " 1.0000e+00, 1.0000e+00, 9.5783e-01, 1.0000e+00, 9.1427e-01, 9.9806e-01,\n",
- " 1.0000e+00, 1.0000e+00, 9.9345e-01, 1.0000e+00], dtype=torch.float64)\n"
+ "tensor([1.0000, 0.9144, 0.4944, 0.2837, 0.2784, 0.8687, 1.0000, 0.7463, 0.2899,\n",
+ " 0.8998, 1.0000, 0.9147, 0.6389, 0.9422, 0.9582, 0.9396, 0.9890, 0.5130,\n",
+ " 0.9698, 0.9237, 0.5732, 0.4620, 0.9995, 0.9078, 0.5873, 1.0000, 1.0000,\n",
+ " 1.0000, 0.3785, 0.6764, 0.4217, 0.9299, 0.7756, 0.4339, 0.8334, 0.9297,\n",
+ " 0.9992, 0.5584, 0.9937, 0.7811, 0.4986, 0.7630, 0.5361, 0.7157, 0.1689,\n",
+ " 0.3086, 0.3604, 0.2423, 0.2880, 0.6404, 0.5570, 0.3274, 0.7749, 0.6740,\n",
+ " 0.5516, 1.0000, 0.2399, 0.9721, 0.5346, 0.4709, 1.0000, 0.9732, 0.8470,\n",
+ " 0.8863, 0.0596, 0.0000, 0.5244, 0.0000, 1.0000, 1.0000, 1.0000, 0.0088,\n",
+ " 0.9706, 1.0000, nan, nan, nan, nan, nan, nan, nan,\n",
+ " nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
+ " nan, nan, nan, nan, nan, nan, nan, nan, nan,\n",
+ " nan, nan, nan, nan, nan, nan, nan, 0.9895, 0.8531,\n",
+ " 0.9985, 0.9470, 1.0000, 1.0000, 0.9918, 0.9792, 1.0000, 1.0000, 0.8824,\n",
+ " 1.0000, 0.9996, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000],\n",
+ " dtype=torch.float64)\n"
]
}
],
@@ -439,9 +433,9 @@
"output_type": "stream",
"text": [
"MEAN\n",
- "aupimo_result.aupimos[~isnan].mean().item()=0.6273086756193275\n",
+ "aupimo_result.aupimos[~isnan].mean().item()=0.7428419829089654\n",
"OTHER STATISTICS\n",
- "DescribeResult(nobs=92, minmax=(0.0, 1.0), mean=0.6273086756193275, variance=0.12220088826183258, skewness=-0.506530110649306, kurtosis=-1.1586400848600655)\n"
+ "DescribeResult(nobs=92, minmax=(0.0, 1.0), mean=0.7428419829089654, variance=0.08757789538421837, skewness=-0.9285672286850366, kurtosis=-0.3299234749959594)\n"
]
}
],
@@ -469,7 +463,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGjklEQVR4nO3de3zP9f//8fvbzovNaU7ZbEZCyMehlM+Qs1HKB2FF5JRTh69KKvMpKZVPpXLoI3w+bYgQCskpSuSc0yKHiTnbhs3M9vz94b337/Nuw97z3vu9rdv1cnlfeD1fr/fr9Xi/n8Pd6/V8PV8WY4wRAAAAVMzdBQAAABQUBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwCFxtq1a2WxWLR27VpbW58+fRQaGuqS44eGhqpPnz625ZkzZ8pisWjLli0uOX7z5s3VvHlzlxwL+KsiGAEFwKeffiqLxaL77rsvx/VHjhyRxWLRe++9l+P69957TxaLRUeOHLG1NW/eXBaLxfYqXbq0GjVqpM8//1yZmZm27fr06aPixYvb7S/rvdWrV8/xeCtXrrTtd/78+dnW79mzR1FRUbrzzjvl4+OjSpUqqVevXtqzZ8+tvgqX2Lt3r6Kjo+2+r4KiINcG/BV4ursAAFJMTIxCQ0O1efNmHTx4UNWqVXPKfitXrqzx48dLks6cOaP//Oc/6tevn3777Te9/fbbN32vr6+vDh48qM2bN6tx48bZ6vX19dWVK1eyvW/BggXq0aOHSpcurX79+iksLExHjhzR9OnTNX/+fM2ZM0ePPvqoUz6fJH322Wd2QS839u7dq7Fjx6p58+YOnW2Ki4tTsWL5+//Jm9X23Xff5euxAXDGCHC7w4cP66efftLEiRMVFBSkmJgYp+07MDBQUVFRioqK0nPPPacff/xRlStX1scff6z09PSbvjc8PFw1atTQ7Nmz7dqvXLmihQsXKjIyMtt7fv/9dz3xxBOqWrWqdu3apTfffFP9+vXTG2+8oV27dqlq1ap64okndOjQIad9Ri8vL/n4+Dhtf39mjFFqaqokycfHR15eXvl2rFvx9vaWt7e3244P/BUQjAA3i4mJUalSpRQZGal//OMfTg1Gf+bv76/7779fly9f1pkzZ265fY8ePTR37ly7MzJLlixRSkqKunXrlm37d999VykpKZo2bZqCgoLs1pUtW1ZTp07V5cuXNWHChFse+48//lDnzp11xx13qFy5cnruueeUlpaWbbucxhjNmTNHDRo0UIkSJRQQEKA6deroww8/lHR9XFDXrl0lSS1atLBdEswatxQaGqqOHTtqxYoVatiwofz8/DR16lTbuv8dY5QlJSVFAwcOVJkyZRQQEKAnn3xSFy5csNvGYrEoOjo623v/d5+3qi2nMUanT59Wv379VL58efn6+qpevXqaNWuW3Tb/eyl22rRpCg8Pl4+Pjxo1aqRffvklW03AXxmX0gA3i4mJ0WOPPSZvb2/16NFDkydP1i+//KJGjRrly/EOHTokDw8PlSxZ8pbb9uzZU9HR0Vq7dq0eeughSVJsbKxatmypcuXKZdt+yZIlCg0N1d///vcc9xcREaHQ0FB98803Nz1uamqqWrZsqfj4eA0fPlyVKlXSf//7X61evfqWNa9cuVI9evRQy5Yt9c4770iS9u3bpx9//FEjRoxQRESEhg8fro8++kivvPKKatasKUm2X6Xrl8x69OihgQMHqn///qpRo8ZNjzl06FCVLFlS0dHRiouL0+TJk3X06FHbYPHcyk1t/ys1NVXNmzfXwYMHNXToUIWFhWnevHnq06ePEhMTNWLECLvtY2NjdfHiRQ0cOFAWi0UTJkzQY489pkOHDrn1TBhQkBCMADfaunWr9u/fr0mTJkmSmjZtqsqVKysmJsYpwSgjI0Nnz56VJJ09e1aTJ0/Wtm3b1KlTJ/n7+9/y/dWrV1fDhg0VGxurhx56SImJifr222/12WefZds2KSlJJ06c0COPPHLTfdatW1eLFy/WxYsXVaJEiRy3mTZtmn777Td9+eWXtjMo/fv3V7169W5Z8zfffKOAgACtWLFCHh4e2dZXrVpVf//73/XRRx+pdevWOd7ldfDgQS1fvlxt27a95fGk65e4Vq1aZQsXVapU0YsvvqglS5bo4YcfztU+clvb/5o2bZr27dunL774Qr169ZIkDRo0SM2aNdOrr76qvn372n3H8fHxOnDggEqVKiVJqlGjhh555BGtWLFCHTt2zHWdQFHGpTTAjWJiYlS+fHm1aNFC0vXLLd27d9ecOXOUkZFx2/vfv3+/goKCFBQUpJo1a2rSpEmKjIzU559/nut99OzZUwsWLNDVq1c1f/58eXh45Dh4+uLFi5J0w7CTJWt9cnLyDbf59ttvVbFiRf3jH/+wtfn7+2vAgAG3rLdkyZK6fPmyVq5cecttbyQsLCzXoUiSBgwYYHfGZfDgwfL09NS3336b5xpy49tvv1WFChXUo0cPW5uXl5eGDx+uS5cuad26dXbbd+/e3RaKJNnO7DlzzBdQ2BGMADfJyMjQnDlz1KJFCx0+fFgHDx7UwYMHdd999+nUqVNatWqVw/v882Wb0NBQrVy5Ut9//702bNigkydPaunSpSpbtmyu9/n4448rKSlJy5YtU0xMjDp27Jhj+MlqywpIN5KbAHX06FFVq1Yt2+e51SUtSXrmmWd01113qX379qpcubL69u2r5cuX3/J9/yssLMyh7f88rUHx4sVVsWLFfL/l/ujRo6pevXq2O+WyLr0dPXrUrj0kJMRuOSsk/Xk8FPBXxqU0wE1Wr16thIQEzZkzR3PmzMm2PiYmRm3atJF0/dZ5Sba7o/4sJSXFbrssd9xxh1q1anVbdVasWFHNmzfX+++/rx9//FFfffVVjtsFBgaqYsWK2rVr1033t2vXLt15550KCAi4rbpupFy5ctqxY4dWrFihZcuWadmyZZoxY4aefPLJbIOSb8TPzy9fasuJM84M5lZOlxal63feAbiOM0aAm8TExKhcuXKaN29etlePHj20cOFCWxAKCgqSv7+/4uLictxXXFyc/P39HToT5IiePXtq/fr1CggIUIcOHW64XceOHXX48GFt2LAhx/Xr16/XkSNHbjmepUqVKvr999+z/YN9o8//Z97e3urUqZM+/fRT/f777xo4cKD+85//6ODBg5Kyn1m7XQcOHLBbvnTpkhISEuzulitVqpQSExPttrt69aoSEhLs2hyprUqVKjpw4EC2eZz2799vWw/AMQQjwA1SU1O1YMECdezYUf/4xz+yvYYOHaqLFy9q8eLFkq7/T79NmzZasmSJ4uPj7fYVHx+vJUuWqE2bNjc8I3C7/vGPf2jMmDH69NNPbzqPzsiRI+Xn56eBAwfq3LlzduvOnz+vQYMGyd/fXyNHjrzp8Tp06KATJ07YzaqdNQ3Arfz5uMWKFVPdunUlyXa7/x133CFJ2YJKXk2bNs1uXqjJkyfr2rVrat++va0tPDxcP/zwQ7b3/fmMkSO1dejQQSdPntTcuXNtbdeuXdOkSZNUvHhxNWvWLC8fB/hL41Ia4AZZd2Xd6I6l+++/3zbZY/fu3SVJb731lu6//3797W9/04ABAxQaGqojR45o2rRpslgseuutt/Kt3sDAwBzn4Pmz6tWra9asWerVq5fq1KmTbebrs2fPavbs2QoPD7/pfvr376+PP/5YTz75pLZu3aqKFSvqv//9b67upHv66ad1/vx5PfTQQ6pcubKOHj2qSZMm6d5777WNvbn33nvl4eGhd955R0lJSfLx8dFDDz2U4xQEuXH16lW1bNlS3bp1U1xcnD799FM1bdrUrn+ffvppDRo0SF26dFHr1q21c+dOrVixIttZPkdqGzBggKZOnao+ffpo69atCg0N1fz58/Xjjz/qgw8+uOVAeAA5MABcrlOnTsbX19dcvnz5htv06dPHeHl5mbNnz9ra9u3bZ7p3727KlStnPD09Tbly5czjjz9u9u3bl+39zZo1M7Vr175lLb179zZ33HGHw+9ds2aNkWTmzZuXbd2uXbtMjx49TMWKFY2Xl5epUKGC6dGjh/n1119vWU+Wo0ePmocfftj4+/ubsmXLmhEjRpjly5cbSWbNmjV29VepUsW2PH/+fNOmTRtTrlw54+3tbUJCQszAgQNNQkKC3f4/++wzU7VqVePh4WG3zypVqpjIyMgca6pSpYrp3bu3bXnGjBlGklm3bp0ZMGCAKVWqlClevLjp1auXOXfunN17MzIyzEsvvWTKli1r/P39Tdu2bc3Bgwez7fNmtTVr1sw0a9bMbttTp06Zp556ypQtW9Z4e3ubOnXqmBkzZthtc/jwYSPJvPvuu9k+kyQzZsyYHD8v8FdkMYZRdwAAABJjjAAAAGwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYFXkJ3jMzMzUiRMnVKJECac/BgAAAOQPY4wuXryoSpUqZXtQcn4q8sHoxIkTCg4OdncZAAAgD44dO6bKlSu77HhFPhhlTYl/+PBhlS5d2s3V/LWlp6fru+++U5s2beTl5eXucv7S6IuChf4oOOiLguP8+fMKCwtz+aNt3BqMJk+erMmTJ+vIkSOSpNq1a+v1119X+/btdf78eY0ZM0bfffed4uPjFRQUpM6dO+uNN95QYGBgro+RdfmsRIkSCggIyI+PgVxKT0+Xv7+/AgIC+AvHzeiLgoX+KDjoi4Ij68HMrh4G49ZgVLlyZb399tuqXr26jDGaNWuWHnnkEW3fvl3GGJ04cULvvfeeatWqpaNHj2rQoEHZnrgNAADgLG4NRp06dbJbHjdunCZPnqyff/5Z/fr101dffWVbFx4ernHjxikqKkrXrl2Tp2eRvwoIAABcrMCki4yMDM2bN0+XL19WkyZNctwmKSlJAQEBNw1FaWlpSktLsy0nJydLun5KLuu0HNwj6/unH9yPvihY6I+Cg74oONzVBxZjjHHLka1+/fVXNWnSRFeuXFHx4sUVGxurDh06ZNvu7NmzatCggaKiojRu3Lgb7i86Olpjx47N1h4bGyt/f3+n1g4AAPJHSkqKevbsaTsp4ipuD0ZXr15VfHy8kpKSNH/+fP373//WunXrVKtWLds2ycnJat26tUqXLq3FixffdEBcTmeMgoODlZCQoDJlyuTrZ8HNpaena+XKlWrdujWDGt2MvihY6I+Cg74oOM6dO6eKFSu6PBi5/VKat7e3qlWrJklq0KCBfvnlF3344YeaOnWqJOnixYtq166dSpQooYULF97yB9XHx0c+Pj7Z2r28vPghLyDoi4KDvihY6I+Cg75wP3d9/wXukSCZmZm2Mz7Jyclq06aNvL29tXjxYvn6+rq5OgAAUJS59YzRqFGj1L59e4WEhOjixYuKjY3V2rVrtWLFClsoSklJ0RdffKHk5GTbQOqgoCB5eHi4s3QAAFAEuTUYnT59Wk8++aQSEhIUGBiounXrasWKFWrdurXWrl2rTZs2SZLtUluWw4cPKzQ01A0VAwCAosytwWj69Ok3XNe8eXO5eVw4AAD4iylwY4wAAADchWAEAABgRTACAACwIhgBAABYuX2CRwAA4Fzx8fE6e/asu8u4LVlT9LgawQgAgCIkPj5eNe6uqSupKe4u5ba4a1JnghEAAEXI2bNndSU1RWU6viCvMsHuLifPLOcOK2Hphy4/LsEIAIAiyKtMsHwqVLv1hgWUyUy79Ub5gMHXAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArAhGAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArAhGAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArNwajMaPH69GjRqpRIkSKleunDp37qy4uLgctzXGqH379rJYLFq0aJFrCwUAAH8Jbg1G69at05AhQ/Tzzz9r5cqVSk9PV5s2bXT58uVs237wwQeyWCxuqBIAAPxVeOblTenp6Tp58qRSUlIUFBSk0qVL5+ngy5cvt1ueOXOmypUrp61btyoiIsLWvmPHDr3//vvasmWLKlasmKdjAQAA3Equg9HFixf1xRdfaM6cOdq8ebOuXr0qY4wsFosqV66sNm3aaMCAAWrUqFGei0lKSpIku6CVkpKinj176pNPPlGFChVuuY+0tDSlpaXZlpOTkyVdD3Pp6el5rg23L+v7px/cj74oWOiPgqMo9EVmZqb8/Pzk62mRt4dxdzl5lpmnUze3z2KMueW3NnHiRI0bN07h4eHq1KmTGjdurEqVKsnPz0/nz5/X7t27tX79ei1atEj33XefJk2apOrVqztUSGZmph5++GElJiZqw4YNtvaBAwcqIyND//73v68XbLFo4cKF6ty5c477iY6O1tixY7O1x8bGyt/f36GaAACAe2SdGElKSlJAQIDLjpurYNSjRw+9+uqrql279k23S0tL04wZM+Tt7a2+ffs6VMjgwYO1bNkybdiwQZUrV5YkLV68WC+88IK2b9+u4sWLXy/4FsEopzNGwcHBSkhIUJkyZRyqCc6Vnp6ulStXqnXr1vLy8nJ3OX9p9EXBQn8UHEWhL3bu3KmIiAiV7/m2vMtXdXc5eZaZsFcHZ7zk8mCUqxNVs2fPztXOfHx8NGjQIIeLGDp0qJYuXaoffvjBFookafXq1fr9999VsmRJu+27dOmiv//971q7dm2ONfj4+GRr9/LyKrQ/5EUNfVFw0BcFC/1RcBTmvihWrJhSU1N15ZqRySi8Ny2Za+457m1fwUtOTtbq1atVo0YN1axZ06H3GmM0bNgwLVy4UGvXrlVYWJjd+pdffllPP/20XVudOnX0r3/9S506dbrd0gEAAOw4HIy6deumiIgIDR06VKmpqWrYsKGOHDkiY4zmzJmjLl265HpfQ4YMUWxsrL7++muVKFFCJ0+elCQFBgbKz89PFSpUyHHAdUhISLYQBQAAcLscnsfohx9+0N///ndJ0sKFC2WMUWJioj766CO9+eabDu1r8uTJSkpKUvPmzVWxYkXba+7cuY6WBQAAcNscPmOUlJRku51++fLl6tKli/z9/RUZGamRI0c6tK9cjPt2ynsAAAByw+EzRsHBwdq4caMuX76s5cuXq02bNpKkCxcuyNfX1+kFAgAAuIrDZ4yeffZZ9erVS8WLF1dISIiaN28u6foltjp16ji7PgAAAJdxOBg988wzaty4sY4dO6bWrVurWLHrJ52qVq3q8BgjAACAgiRPt+s3bNhQdevW1eHDhxUeHi5PT09FRkY6uzYAAACXcniMUUpKivr16yd/f3/Vrl1b8fHxkqRhw4bp7bffdnqBAAAAruJwMBo1apR27typtWvX2g22btWqFbfZAwCAQs3hS2mLFi3S3Llzdf/998ti+f9TjdeuXVu///67U4sDAABwJYfPGJ05c0blypXL1n758mW7oAQAAFDYOByMGjZsqG+++ca2nBWG/v3vf6tJkybOqwwAAMDFHL6U9tZbb6l9+/bau3evrl27pg8//FB79+7VTz/9pHXr1uVHjQAAAC7h8Bmjpk2baseOHbp27Zrq1Kmj7777TuXKldPGjRvVoEGD/KgRAADAJfI0j1F4eLg+++wzZ9cCAADgVg4Ho+Tk5BzbLRaLfHx85O3tfdtFAQAAuIPDwahkyZI3vfuscuXK6tOnj8aMGWN7XAgAAEBh4HAwmjlzpkaPHq0+ffqocePGkqTNmzdr1qxZevXVV3XmzBm999578vHx0SuvvOL0ggEAAPKLw8Fo1qxZev/999WtWzdbW6dOnVSnTh1NnTpVq1atUkhIiMaNG0cwAgAAhYrD17p++ukn1a9fP1t7/fr1tXHjRknX71zLeoYaAABAYeFwMAoODtb06dOztU+fPl3BwcGSpHPnzqlUqVK3Xx0AAIALOXwp7b333lPXrl21bNkyNWrUSJK0ZcsW7d+/X/Pnz5ck/fLLL+revbtzKwUAAMhnDgejhx9+WHFxcZo6dari4uIkSe3bt9eiRYsUGhoqSRo8eLBTiwQAAHCFPE3wGBoaqvHjxzu7FgAAALfKUzCSpJSUFMXHx+vq1at27XXr1r3togAAANzB4WB05swZPfXUU1q2bFmO6zMyMm67KAAAAHdw+K60Z599VomJidq0aZP8/Py0fPlyzZo1S9WrV9fixYvzo0YAAACXcPiM0erVq/X111+rYcOGKlasmKpUqaLWrVsrICBA48ePV2RkZH7UCQAAkO8cPmN0+fJllStXTpJUqlQpnTlzRpJUp04dbdu2zbnVAQAAuJDDwahGjRq22/Tr1aunqVOn6vjx45oyZYoqVqzo9AIBAABcxeFLaSNGjFBCQoIkacyYMWrXrp1iYmLk7e2tmTNnOrs+AAAAl3E4GEVFRdl+36BBAx09elT79+9XSEiIypYt69TiAAAAXCnP8xhl8ff319/+9jdn1AIAAOBWDgcjY4zmz5+vNWvW6PTp08rMzLRbv2DBAqcVBwAA4EoOB6Nnn31WU6dOVYsWLVS+fHlZLJb8qAsAAMDlHA5G//3vf7VgwQJ16NAhP+oBAABwG4dv1w8MDFTVqlXzoxYAAAC3cjgYRUdHa+zYsUpNTc2PegAAANzG4Utp3bp10+zZs1WuXDmFhobKy8vLbj2zXwMAgMLK4WDUu3dvbd26VVFRUQy+BgAARYrDweibb77RihUr1LRp0/yoBwAAwG0cHmMUHBysgICA/KgFAADArRwORu+//75efPFFHTlyJB/KAQAAcJ88PSstJSVF4eHh8vf3zzb4+vz5804rDgAAwJUcDkYffPBBPpQBAADgfnm6Kw0AAKAoylUwSk5Otg24Tk5Ovum2DMwGAACFVa6CUalSpZSQkKBy5cqpZMmSOc5dZIyRxWJRRkaG04sEAABwhVwFo9WrV6t06dKSpDVr1uRrQQAAAO6Sq2DUrFmzHH8PAABQlDg8jxEAAEBRRTACAACwIhgBAABY5SoYLV68WOnp6fldCwAAgFvlKhg9+uijSkxMlCR5eHjo9OnT+VkTAACAW+QqGAUFBennn3+W9P/nKwIAAChqcnW7/qBBg/TII4/IYrHIYrGoQoUKN9yWCR4BAEBhlatgFB0drccff1wHDx7Uww8/rBkzZqhkyZL5XBoAAIBr5fohsnfffbfuvvtujRkzRl27dpW/v39+1gUAAOByuQ5GWcaMGSNJOnPmjOLi4iRJNWrUUFBQkHMrAwAAcDGH5zFKSUlR3759ValSJUVERCgiIkKVKlVSv379lJKSkh81AgAAuITDwei5557TunXrtHjxYiUmJioxMVFff/211q1bpxdeeCE/agQAAHAJhy+lffXVV5o/f76aN29ua+vQoYP8/PzUrVs3TZ482Zn1AQAAuEyeLqWVL18+W3u5cuW4lAYAAAo1h4NRkyZNNGbMGF25csXWlpqaqrFjx6pJkyZOLQ4AAMCVHL6U9uGHH6pt27aqXLmy6tWrJ0nauXOnfH19tWLFCqcXCAAA4CoOB6N77rlHBw4cUExMjPbv3y9J6tGjh3r16iU/Pz+nFwgAAOAqDgcjSfL391f//v2dXQsAAIBbOTzGCAAAoKgiGAEAAFgRjAAAAKwcCkYZGRn64YcflJiYmE/lAAAAuI9DwcjDw0Nt2rTRhQsX8qseAAAAt3H4Uto999yjQ4cO5UctAAAAbuVwMHrzzTf1f//3f1q6dKkSEhKUnJxs9wIAACisHJ7HqEOHDpKkhx9+WBaLxdZujJHFYlFGRobzqgMAAHAhh4PRmjVr8qMOAAAAt3M4GDVr1iw/6gAAAHC7PM1jtH79ekVFRemBBx7Q8ePHJUn//e9/tWHDBqcWBwAA4EoOB6OvvvpKbdu2lZ+fn7Zt26a0tDRJUlJSkt566y2nFwgAAOAqeborbcqUKfrss8/k5eVla3/wwQe1bds2pxYHAADgSg4Ho7i4OEVERGRrDwwMZEZsAABQqDkcjCpUqKCDBw9ma9+wYYOqVq3qlKIAAADcweFg1L9/f40YMUKbNm2SxWLRiRMnFBMTo//7v//T4MGDHdrXDz/8oE6dOqlSpUqyWCxatGhRtm327dunhx9+WIGBgbrjjjvUqFEjxcfHO1o2AADALTl8u/7LL7+szMxMtWzZUikpKYqIiJCPj4/+7//+T8OGDXNoX5cvX1a9evXUt29fPfbYY9nW//7772ratKn69eunsWPHKiAgQHv27JGvr6+jZQMAANySw8HIYrFo9OjRGjlypA4ePKhLly6pVq1aKl68uMMHb9++vdq3b3/D9aNHj1aHDh00YcIEW1t4eLjDxwEAAMgNh4NRFm9vb5UoUUIlSpTIUyi6lczMTH3zzTd68cUX1bZtW23fvl1hYWEaNWqUOnfufMP3paWl2aYQkGR7flt6errS09OdXidyL+v7px/cj74oWOiPgqMo9EVmZqb8/Pzk62mRt4dxdzl5lpnnhHJ7LMYYh761a9euaezYsfroo4906dIlSVLx4sU1bNgwjRkzxu4WfocKsVi0cOFCW+g5efKkKlasKH9/f7355ptq0aKFli9frldeeUVr1qy54Qzc0dHRGjt2bLb22NhY+fv756k2AADgWikpKerZs6eSkpIUEBDgsuM6nMeGDRumBQsWaMKECWrSpIkkaePGjYqOjta5c+c0efJkpxSWmZkpSXrkkUf03HPPSZLuvfde/fTTT5oyZcoNg9GoUaP0/PPP25aTk5MVHBysFi1aqEyZMk6pDXmTnp6ulStXqnXr1nkO0HAO+qJgoT8KjqLQFzt37lRERITK93xb3uUL793imQnH3HJch4NRbGys5syZYzc2qG7dugoODlaPHj2cFozKli0rT09P1apVy669Zs2aN330iI+Pj3x8fLK1e3l5Fdof8qKGvig46IuChf4oOApzXxQrVkypqam6cs3IZFjcXU6emWvuOa7Dt+v7+PgoNDQ0W3tYWJi8vb2dUZOk62OYGjVqpLi4OLv23377TVWqVHHacQAAALI4fMZo6NCheuONNzRjxgzbmZm0tDSNGzdOQ4cOdWhfly5dspss8vDhw9qxY4dKly6tkJAQjRw5Ut27d1dERIRtjNGSJUu0du1aR8sGAAC4pVwFoz/PMfT999+rcuXKqlevnqTr1zOvXr2qli1bOnTwLVu2qEWLFrblrLFBvXv31syZM/Xoo49qypQpGj9+vIYPH64aNWroq6++UtOmTR06DgAAQG7kKhgFBgbaLXfp0sVuOTg4OE8Hb968uW51U1zfvn3Vt2/fPO0fAADAEbkKRjNmzMjvOgAAANzO4cHXAAAARZXDg6/PnTun119/XWvWrNHp06dt8w1lOX/+vNOKAwAAcCWHg9ETTzyhgwcPql+/fipfvrwslsI7RwIAAMD/cjgYrV+/Xhs2bLDdkQYAAFBUODzG6O6771Zqamp+1AIAAOBWDgejTz/9VKNHj9a6det07tw5JScn270AAAAKK4cvpZUsWVLJycl66KGH7NqNMbJYLMrIyHBacQAAAK7kcDDq1auXvLy8FBsby+BrAABQpDgcjHbv3q3t27erRo0a+VEPAACA2zg8xqhhw4Y6duxYftQCAADgVg6fMRo2bJhGjBihkSNHqk6dOvLy8rJbX7duXacVBwAA4EoOB6Pu3btLkt2DXS0WC4OvAQBAoedwMDp8+HB+1AEAAOB2DgejKlWq5EcdAAAAbudwMPrPf/5z0/VPPvlknosBAABwJ4eD0YgRI+yW09PTlZKSIm9vb/n7+xOMAABAoeXw7foXLlywe126dElxcXFq2rSpZs+enR81AgAAuITDwSgn1atX19tvv53tbBIAAEBh4pRgJEmenp46ceKEs3YHAADgcg6PMVq8eLHdsjFGCQkJ+vjjj/Xggw86rTAAAABXczgYde7c2W7ZYrEoKChIDz30kN5//31n1QUAAOByDgejzMzM/KgDAADA7Zw2xggAAKCwc/iMUUZGhmbOnKlVq1bp9OnT2c4grV692mnFAQAAuFKeJnicOXOmIiMjdc8998hiseRHXQAAAC7ncDCaM2eOvvzyS3Xo0CE/6sk3v/76qwICAtxdxm0pW7asQkJC3F0GAABFlsPByNvbW9WqVcuPWvJV+/btdeXKFXeXcVt8/fwVt38f4QgAgHzicDB64YUX9OGHH+rjjz8uVJfRSrUaKFMmzN1l5Fn6uWM6t/R9nT17lmAEAEA+cTgYbdiwQWvWrNGyZctUu3ZteXl52a1fsGCB04pzJq9SlWSpUPjOdAEAANdxOBiVLFlSjz76aH7UAgAA4FYOB6MZM2bkRx0AAABuxwSPAAAAVrkKRu3atdPPP/98y+0uXryod955R5988sltFwYAAOBqubqU1rVrV3Xp0kWBgYHq1KmTGjZsqEqVKsnX11cXLlzQ3r17tWHDBn377beKjIzUu+++m991AwAAOF2uglG/fv0UFRWlefPmae7cuZo2bZqSkpIkSRaLRbVq1VLbtm31yy+/qGbNmvlaMAAAQH7J9eBrHx8fRUVFKSoqSpKUlJSk1NRUlSlTJtst+wAAAIWRw3elZQkMDFRgYKAzawEAAHAr7koDAACwIhgBAABYEYwAAACsCEYAAABWDgejqlWr6ty5c9naExMTVbVqVacUBQAA4A4OB6MjR44oIyMjW3taWpqOHz/ulKIAAADcIde36y9evNj2+xUrVtjdqp+RkaFVq1YpNDTUqcUBAAC4Uq6DUefOnSVdn+m6d+/eduu8vLwUGhqq999/36nFAQAAuFKug1FmZqYkKSwsTL/88ovKli2bb0UBAAC4g8MzXx8+fDg/6gAAAHC7PD0SZNWqVVq1apVOnz5tO5OU5fPPP3dKYQAAAK7mcDAaO3as/vnPf6phw4aqWLGiLBZLftQFAIDb7Ny5U8WKFc6p/vbt2+fuEgo1h4PRlClTNHPmTD3xxBP5UQ8AAG7zxx9/SJIiIiKUmprq5mrgDg4Ho6tXr+qBBx7Ij1oAAHCrrAmMS7cbpoyASm6uJm9SD21R0vov3F1GoeVwMHr66acVGxur1157LT/qAQDA7bxK3ynPsuHuLiNP0s8dc3cJhZrDwejKlSuaNm2avv/+e9WtW1deXl526ydOnOi04gAAAFzJ4WC0a9cu3XvvvZKk3bt3261jIDYAACjMHA5Ga9asyY86AAAA3K5w3osIAACQDxw+Y9SiRYubXjJbvXr1bRUEAADgLg4Ho6zxRVnS09O1Y8cO7d69O9vDZQEAAAoTh4PRv/71rxzbo6OjdenSpdsuCAAAwF3y9Ky0nERFRalx48Z67733nLVLALil+Ph4nT171t1l3JY/P3MSgPs4LRht3LhRvr6+ztodANxSfHy8atxdU1dSU9xdym3x8/PT7Nmz9ccffygsLMzd5QB/aQ4Ho8cee8xu2RijhIQEbdmyhdmwAbjU2bNndSU1RWU6viCvMsHuLifPPJJPSLr+OAqCEeBeDgejwMBAu+VixYqpRo0a+uc//6k2bdo4rTAAyC2vMsHyqVDN3WXkmcWTyXGBgsLhYDRjxoz8qAMAAMDt8jzGaOvWrdq3b58kqXbt2qpfv77TigIAAHAHh4PR6dOn9fjjj2vt2rUqWbKkJCkxMVEtWrTQnDlzFBQU5OwaAQAAXMLhR4IMGzZMFy9e1J49e3T+/HmdP39eu3fvVnJysoYPH54fNQIAALiEw2eMli9fru+//141a9a0tdWqVUuffPIJg68BAECh5vAZo8zMTHl5eWVr9/LyYpIyAABQqDkcjB566CGNGDFCJ06csLUdP35czz33nFq2bOnU4gAAAFzJ4WD08ccfKzk5WaGhoQoPD1d4eLjCwsKUnJysSZMm5UeNAAAALuHwGKPg4GBt27ZN33//vfbv3y9Jqlmzplq1auX04gAAAFwpT/MYWSwWtW7dWq1bt3Z2PQAAAG6T60tpq1evVq1atZScnJxtXVJSkmrXrq3169c7tTgAAABXynUw+uCDD9S/f38FBARkWxcYGKiBAwdq4sSJTi0OAADAlXIdjHbu3Kl27drdcH2bNm20detWpxQFAADgDrkORqdOncpx/qIsnp6eOnPmjFOKAgAAcIdcB6M777xTu3fvvuH6Xbt2qWLFik4pCgAAwB1yHYw6dOig1157TVeuXMm2LjU1VWPGjFHHjh2dWhwAAIAr5ToYvfrqqzp//rzuuusuTZgwQV9//bW+/vprvfPOO6pRo4bOnz+v0aNHO7W4jIwMvfbaawoLC5Ofn5/Cw8P1xhtvyBjj1OMAAABIDsxjVL58ef30008aPHiwRo0aZQsnFotFbdu21SeffKLy5cs7tbh33nlHkydP1qxZs1S7dm1t2bJFTz31lAIDAzV8+HCnHgsAAMChCR6rVKmib7/9VhcuXNDBgwdljFH16tVVqlSpfCnup59+0iOPPKLIyEhJUmhoqGbPnq3Nmzfny/EAAMBfW55mvi5VqpQaNWrk7FqyeeCBBzRt2jT99ttvuuuuu7Rz505t2LDhpvMlpaWlKS0tzbacNSGlt6dUzKPwXoKzeFrk5+enzMxMpaenu7ucPMmqu7DWX5QUlb7IzMyUn5+ffD0t8i7kf74lFeo/30VFZmamJMnH0yJTSH+mrnl5FIk/F5l5Sii3z2IK8ICdzMxMvfLKK5owYYI8PDyUkZGhcePGadSoUTd8T3R0tMaOHZutPTY2Vv7+/vlZLgAAcJKUlBT17NlTSUlJOU4unV/clMdy58svv1RMTIxiY2NVu3Zt7dixQ88++6wqVaqk3r175/ieUaNG6fnnn7ctJycnKzg4WK+vPKZiFWu5qnSnu3rqkE7FvqwffvhB9erVc3c5eZKenq6VK1eqdevWN50TC/mvqPTFzp07FRERofI935Z3+aruLifPLOcO6532IapYsaLq16/v7nL+0rZv366EhAS9tCxepkyYu8vJk8v71uv88kmF/s9FZsIxtxy3QAejkSNH6uWXX9bjjz8uSapTp46OHj2q8ePH3zAY+fj4yMfHJ1v71WuSJcOSr/Xmp7RrRqmpqSpWrFih/odMkry8vAr9ZygqCntfFCtWTKmpqbpyzcgU4j/flmvXT9wXhT/fhV2xYtdv1k4rxD9TV9IzisSfC3PNPcfN9e367pCSkmL7Ic3i4eFhuwYMAADgTAX6jFGnTp00btw4hYSEqHbt2tq+fbsmTpyovn37urs0AABQBBXoYDRp0iS99tpreuaZZ3T69GlVqlRJAwcO1Ouvv+7u0gAAQBFUoINRiRIl9MEHH+iDDz5wdykAAOAvoECPMQIAAHAlghEAAIAVwQgAAMCqQI8xApC/du7cmW1KjMJk37597i4BQBFDMAL+gv744w9JUkREhFJTU91cDQAUHAQj4C/o3LlzkqTS7YYpI6CSm6vJu9RDW5S0/gt3lwGgCCEYAX9hXqXvlGfZcHeXkWfp59zzLCUARVfhHVwAAADgZAQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgJWnuwsAABQN8fHxOnv2rLvLuC1xcXEqXry4u8uAGxGMAAC3LT4+XjXurqkrqSnuLuW2+Pn5afbs2e4uA25EMAIA3LazZ8/qSmqKynR8QV5lgt1dTp6ZP3a4uwS4GcEIAOA0XmWC5VOhmrvLyLNrySfcXQLcjMHXAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYMY9RIbNv3z53l5BnmZmZkqSdO3eqWLHCncnT0tLk4+Pj7jLyjMceAEDOCEaFRMalC5LFoqioKHeXkmdZU+1HREQoNTXV3eXcHksxyWS6u4o847EHAJAzglEhkZl2STKmUE+3nzXVful2w5QRUMm9xdyG1ENblLT+iyLRFwAAewSjQqYwT7efNdW+V+k75Vk23M3V5F36uWOSikZfAADsFe6BHgAAAE5EMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIoJHgGggIiLiyu0zxEszM9xBP4XwQgA3CzjcqKkKurfv3/hf44gUMgRjADAzTLTLksq3M8RzHqGIFDYEYwAoIAozM8RzHqGIFDYFc6L2QAAAPmAYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArAhGAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBVKILRJ598otDQUPn6+uq+++7T5s2b3V0SAAAoggp8MJo7d66ef/55jRkzRtu2bVO9evXUtm1bnT592t2lAQCAIqbAB6OJEyeqf//+euqpp1SrVi1NmTJF/v7++vzzz91dGgAAKGIKdDC6evWqtm7dqlatWtnaihUrplatWmnjxo1urAwAABRFnu4u4GbOnj2rjIwMlS9f3q69fPny2r9/f47vSUtLU1pamm05KSlJkmS5EC+Tf6Xmu2IXE+Tr6yvLucMymWm3fkMBVOziSaWkpMhy/qgyr15xdzl5Rl8UHEWhL6Si0R/0RcFRVPrCciFekmSMi//1NgXY8ePHjSTz008/2bWPHDnSNG7cOMf3jBkzxkjixYsXL168eBWB1++//+6KyGFToM8YlS1bVh4eHjp16pRd+6lTp1ShQoUc3zNq1Cg9//zztuXExERVqVJF8fHxCgwMzNd6cXPJyckKDg7WsWPHFBAQ4O5y/tLoi4KF/ig46IuCIykpSSEhISpdurRLj1ugg5G3t7caNGigVatWqXPnzpKkzMxMrVq1SkOHDs3xPT4+PvLx8cnWHhgYyA95AREQEEBfFBD0RcFCfxQc9EXBUayYa4dDF+hgJEnPP/+8evfurYYNG6px48b64IMPdPnyZT311FPuLg0AABQxBT4Yde/eXWfOnNHrr7+ukydP6t5779Xy5cuzDcgGAAC4XQU+GEnS0KFDb3jp7FZ8fHw0ZsyYHC+vwbXoi4KDvihY6I+Cg74oONzVFxZjXH0fHAAAQMFUoCd4BAAAcCWCEQAAgBXBCAAAwIpgBAAAYFUkgtEnn3yi0NBQ+fr66r777tPmzZtt655//nmVLl1awcHBiomJsXvfvHnz1KlTJ1eXWySMHz9ejRo1UokSJVSuXDl17txZcXFxdttcuXJFQ4YMUZkyZVS8eHF16dLFbhbz8+fPq1OnTipevLjq16+v7du3271/yJAhev/9913yeYqSt99+WxaLRc8++6ytjb5wnePHjysqKkplypSRn5+f6tSpoy1bttjWG2P0+uuvq2LFivLz81OrVq104MAB2/q0tDQ98cQTCggI0F133aXvv//ebv/vvvuuhg0b5rLPU1hlZGTotddeU1hYmPz8/BQeHq433njD7rlb9EX++eGHH9SpUydVqlRJFotFixYtslt/q+9euv73Uq9evRQQEKCSJUuqX79+unTpkm39kSNHFBERoTvuuEMRERE6cuSI3fs7duyor776yvHiXfoAknwwZ84c4+3tbT7//HOzZ88e079/f1OyZElz6tQps3jxYlO+fHnzyy+/mNjYWOPr62vOnDljjDEmMTHRVK9e3Rw9etTNn6Bwatu2rZkxY4bZvXu32bFjh+nQoYMJCQkxly5dsm0zaNAgExwcbFatWmW2bNli7r//fvPAAw/Y1j///POmWbNmJi4uzjz77LOmQYMGtnUbN240DRo0MNeuXXPp5yrsNm/ebEJDQ03dunXNiBEjbO30hWucP3/eVKlSxfTp08ds2rTJHDp0yKxYscIcPHjQts3bb79tAgMDzaJFi8zOnTvNww8/bMLCwkxqaqoxxpiPPvrI1KxZ0+zevdu8++67JigoyGRmZhpjjDl06JCpXr26SUpKcsvnK0zGjRtnypQpY5YuXWoOHz5s5s2bZ4oXL24+/PBD2zb0Rf759ttvzejRo82CBQuMJLNw4UK79bf67o0xpl27dqZevXrm559/NuvXrzfVqlUzPXr0sK1/7LHHzOOPP25+++03061bN9OlSxfbujlz5phOnTrlqfZCH4waN25shgwZYlvOyMgwlSpVMuPHjzfvvPOO6d69u21duXLlzObNm40xxgwYMMBMnDjR5fUWVadPnzaSzLp164wx14Onl5eXmTdvnm2bffv2GUlm48aNxhhj2rdvbyZPnmyMMWbv3r3G39/fGGPM1atXTb169cwvv/zi4k9RuF28eNFUr17drFy50jRr1swWjOgL13nppZdM06ZNb7g+MzPTVKhQwbz77ru2tsTEROPj42Nmz55tjDFm8ODB5qWXXjLGGJOSkmIkmdOnTxtjrv+HZMGCBfn4CYqOyMhI07dvX7u2xx57zPTq1csYQ1+40p+DUW6++7179xpJdn/3LFu2zFgsFnP8+HFjjDE1a9Y0y5YtM8ZcD2K1atUyxhhz4cIFU61aNRMfH5+negv1pbSrV69q69atatWqla2tWLFiatWqlTZu3Kh69eppy5YtunDhgrZu3arU1FRVq1ZNGzZs0LZt2zR8+HA3Vl+0JCUlSZLtYX9bt25Venq6Xd/cfffdCgkJ0caNGyVJ9erV0+rVq3Xt2jWtWLFCdevWlSRNmDBBzZs3V8OGDV38KQq3IUOGKDIy0u47l+gLV1q8eLEaNmyorl27qly5cqpfv74+++wz2/rDhw/r5MmTdn0RGBio++67z64vNmzYoNTUVK1YsUIVK1ZU2bJlFRMTI19fXz366KMu/1yF0QMPPKBVq1bpt99+kyTt3LlTGzZsUPv27SXRF+6Um+9+48aNKlmypN3fPa1atVKxYsW0adMmSdf75/vvv1dmZqa+++47299bI0eO1JAhQxQcHJy3AvMUpwqI48ePG0nmp59+smsfOXKkady4sTHGmDFjxpjw8HBzzz33mAULFpi0tDRzzz33mC1btphJkyaZu+66yzzwwANm9+7d7vgIRUJGRoaJjIw0Dz74oK0tJibGeHt7Z9u2UaNG5sUXXzTGXP8fQo8ePUxISIiJiIgwe/bsMb/99pupXr26OXv2rBk4cKAJCwszXbt2NYmJiS77PIXR7NmzzT333GM7Df2/Z4zoC9fx8fExPj4+ZtSoUWbbtm1m6tSpxtfX18ycOdMYY8yPP/5oJJkTJ07Yva9r166mW7duxpjrZ+meeeYZExoaaho2bGjWr19vzp07Z6pWrWri4+PN6NGjTXh4uGnTpo35448/XP4ZC4uMjAzz0ksvGYvFYjw9PY3FYjFvvfWWbT194Tr60xmj3Hz348aNM3fddVe2fQUFBZlPP/3UGGPMH3/8YSIjI01wcLCJjIw0f/zxh1m3bp1p2LChOXfunOnatasJCwszAwcONGlpabmut1A8EuR2REdHKzo62rY8duxYtWrVSl5eXnrzzTf166+/aunSpXryySe1detW9xVaiA0ZMkS7d+/Whg0bHHpfYGCgYmNj7doeeughvfvuu4qJidGhQ4cUFxen/v3765///CeDf2/g2LFjGjFihFauXClfX9887YO+cI7MzEw1bNhQb731liSpfv362r17t6ZMmaLevXvnah9eXl765JNP7NqeeuopDR8+XNu3b9eiRYu0c+dOTZgwQcOHD8/b4NK/gC+//FIxMTGKjY1V7dq1tWPHDj377LOqVKkSfVFE3HnnnVq6dKltOS0tTW3bttWsWbP05ptvqkSJEoqLi1O7du00derUXA+UL9SX0sqWLSsPDw+7u2sk6dSpU6pQoUK27ffv368vvvhCb7zxhtauXauIiAgFBQWpW7du2rZtmy5evOiq0ouMoUOHaunSpVqzZo0qV65sa69QoYKuXr2qxMREu+1v1DeSNGPGDJUsWVKPPPKI1q5dq86dO8vLy0tdu3bV2rVr8/FTFG5bt27V6dOn9be//U2enp7y9PTUunXr9NFHH8nT01Ply5enL1ykYsWKqlWrll1bzZo1FR8fL0m27zu3f2dJ0po1a7Rnzx4NHTpUa9euVYcOHXTHHXeoW7du9MVNjBw5Ui+//LIef/xx1alTR0888YSee+45jR8/XhJ94U65+e4rVKig06dP262/du2azp8/f8P+eeutt9SmTRs1aNBAa9euVZcuXeTl5aXHHnvMof4p1MHI29tbDRo00KpVq2xtmZmZWrVqlZo0aWK3rTFGAwcO1MSJE1W8eHFlZGQoPT1dkmy/ZmRkuK74Qs4Yo6FDh2rhwoVavXq1wsLC7NY3aNBAXl5edn0TFxen+Pj4bH0jSWfOnNE///lPTZo0SZKy9Q99c2MtW7bUr7/+qh07dtheDRs2VK9evWy/py9c48EHH8w2bcVvv/2mKlWqSJLCwsJUoUIFu75ITk7Wpk2bcuyLrGkWpk6dKg8PD/rCASkpKSpWzP6fOA8PD2VmZkqiL9wpN999kyZNlJiYaHclZ/Xq1crMzNR9992XbZ/79u1TbGys3njjDUm3+feWwxcLC5g5c+YYHx8fM3PmTLN3714zYMAAU7JkSXPy5Em77aZNm2Z3K9+mTZtMQECA2bhxo3n99ddto9mRO4MHDzaBgYFm7dq1JiEhwfZKSUmxbTNo0CATEhJiVq9ebbZs2WKaNGlimjRpkuP+evbsaSZNmmRbfuedd0yDBg3M3r17Tfv27c0zzzyT75+pKPnfMUbG0BeusnnzZuPp6WnGjRtnDhw4YGJiYoy/v7/54osvbNu8/fbbpmTJkubrr782u3btMo888ki225SzvPLKK+aFF16wLc+dO9eEhISYnTt3mn79+pkOHTq45HMVRr179zZ33nmn7Xb9BQsWmLJly9rG1RlDX+Snixcvmu3bt5vt27cbSWbixIlm+/bttilycvPdt2vXztSvX99s2rTJbNiwwVSvXt3udv0smZmZpmnTpmbJkiW2tsGDB5vIyEizd+9eU79+fTNhwoRc117og5ExxkyaNMmEhIQYb29v07hxY/Pzzz/brT958qSpUqWK7Ra/LGPHjjWlS5c2d999t9m0aZMrSy70JOX4mjFjhm2b1NRU88wzz5hSpUoZf39/8+ijj5qEhIRs+1q+fLlp3LixycjIsLVdvnzZdO3a1ZQoUcK0bNnSnDp1yhUfq8j4czCiL1xnyZIl5p577jE+Pj7m7rvvNtOmTbNbn5mZaV577TVTvnx54+PjY1q2bGni4uKy7efXX3811apVs5sbLCMjwwwePNgEBASYRo0amQMHDuT75ymskpOTzYgRI0xISIjx9fU1VatWNaNHj7YbhEtf5J81a9bk+G9E7969jTG5++7PnTtnevToYYoXL24CAgLMU089ZS5evJjtWFOmTLE78WGMMadOnTItW7Y0JUqUMF27djWXL1/Ode0WY/5nGlAAAIC/sEI9xggAAMCZCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAGArj9w2mKxyGKx6IMPPritfTVv3ty2rx07djilPgCuQTACcEsbN26Uh4eHIiMjs61bu3atLBZLtofUSlJoaKhdyMgKCxaLRYGBgXrwwQe1evVq2/o+ffqoc+fOdssWi0WDBg3Ktu8hQ4bIYrGoT58+du3Hjh1T3759ValSJXl7e6tKlSoaMWKEzp07d8vPWbt2bSUkJGjAgAG2tueff16lS5dWcHCwYmJi7LafN2+eOnXqlG0/CxYs0ObNm295PAAFD8EIwC1Nnz5dw4YN0w8//KATJ07c1r5mzJihhIQE/fjjjypbtqw6duyoQ4cO3XD74OBgzZkzR6mpqba2K1euKDY2ViEhIXbbHjp0SA0bNtSBAwc0e/ZsHTx4UFOmTLE9WPr8+fM3rc3T01MVKlSQv7+/JGnJkiWKjY3Vd999pwkTJujpp5/W2bNnJUlJSUkaPXq0Pvnkk2z7KV26tIKCgnL9nQAoOAhGAG7q0qVLmjt3rgYPHqzIyEjNnDnztvZXsmRJVahQQffcc48mT56s1NRUrVy58obb/+1vf1NwcLAWLFhga1uwYIFCQkJUv359u22HDBkib29vfffdd2rWrJlCQkLUvn17ff/99zp+/LhGjx7tUK379u1T8+bN1bBhQ/Xo0UMBAQE6fPiwJOnFF1/U4MGDs4UzAIUbwQjATX355Ze6++67VaNGDUVFRenzzz+Xsx6x6OfnJ0m6evXqTbfr27evZsyYYVv+/PPP9dRTT9ltc/78ea1YsULPPPOMbb9ZKlSooF69emnu3LkO1V6vXj1t2bJFFy5c0NatW5Wamqpq1appw4YN2rZtm4YPH57rfQEoHAhGAG5q+vTpioqKkiS1a9dOSUlJWrdu3W3vNyUlRa+++qo8PDzUrFmzm24bFRWlDRs26OjRozp69Kh+/PFHW01ZDhw4IGOMatasmeM+atasqQsXLujMmTO5rrFt27aKiopSo0aN1KdPH82aNUt33HGHBg8erClTpmjy5MmqUaOGHnzwQe3ZsyfX+wVQcHm6uwAABVdcXJw2b96shQsXSro+Bqd79+6aPn26mjdvnqd99ujRQx4eHkpNTVVQUJCmT5+uunXr3vQ9QUFBtst4xhhFRkaqbNmyOW7rrLNZWaKjoxUdHW1bHjt2rFq1aiUvLy+9+eab+vXXX7V06VI9+eST2rp1q1OPDcD1CEYAbmj69Om6du2aKlWqZGszxsjHx0cff/yxAgMDFRAQIOn6YOSSJUvavT8xMVGBgYF2bf/617/UqlUrBQYGOjRAuW/fvho6dKgk5TjguVq1arJYLNq3b58effTRbOv37dunUqVK3dag6P379+uLL77Q9u3b9fnnnysiIkJBQUHq1q2b+vbtq4sXL6pEiRJ53j8A9+NSGoAcXbt2Tf/5z3/0/vvva8eOHbbXzp07ValSJc2ePVuSVL16dRUrVizb2ZJDhw4pKSlJd911l117hQoVVK1aNYcDSrt27XT16lWlp6erbdu22daXKVNGrVu31qeffmp3B5sknTx5UjExMerevbssFotDx81ijNHAgQM1ceJEFS9eXBkZGUpPT5ck268ZGRl52jeAgoMzRgBytHTpUl24cEH9+vXLdtanS5cumj59ugYNGqQSJUro6aef1gsvvCBPT0/VqVNHx44d00svvaT7779fDzzwgFPq8fDw0L59+2y/z8nHH3+sBx54QG3bttWbb76psLAw7dmzRyNHjtSdd96pcePG5fn4//73vxUUFGSbt+jBBx9UdHS0fv75Zy1btky1atXKdsYMQOHDGSMAOZo+fbrtktefdenSRVu2bNGuXbskSR9++KF69+6tl156SbVr11afPn1Ut25dLVmyJM9naHISEBBgu3SXk+rVq2vLli2qWrWqunXrpvDwcA0YMEAtWrTQxo0bVbp06Twd99SpUxo3bpw++ugjW1vjxo31wgsvKDIyUl9++aXdXXMACi+LcfZIRQAohKKjo7Vo0SKnPcLjyJEjCgsL0/bt23Xvvfc6ZZ8A8h9njADA6tdff1Xx4sX16aef3tZ+2rdvr9q1azupKgCuxBkjAND1CSKzHhkSFBSU4yXE3Dp+/LhtAHhISIi8vb2dUiOA/EcwAgAAsOJSGgAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArAhGAAAAVgQjAAAAK4IRAACA1f8DqBhVg9we8f0AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHeUlEQVR4nO3deVyVZeL+8eugrCKgiKAJgktuqZVLWo0raoqW6aiZlFtuqVk21tdpUcuyZbLFXBvDmkDLMkctNXMrjVwwTVNJc8FccAVUEBHu3x8ez29OuHAQzgH8vF8vXuO5n+c8z3W4G7t6tmMxxhgBAABAbq4OAAAAUFRQjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMABQba9askcVi0Zo1a2xj/fr1U3h4uFP2Hx4ern79+tlez5kzRxaLRZs3b3bK/lu1aqVWrVo5ZV/ArYpiBBQB06ZNk8Vi0T333HPV5QcOHJDFYtG//vWvqy7/17/+JYvFogMHDtjGWrVqJYvFYvspX768mjRpoo8//lg5OTm29fr16ydfX1+77V15b82aNa+6vxUrVti2++WXX+Za/ttvvyk6Olq33XabPD09VblyZfXp00e//fbbjX4VTrFz506NHz/e7vdVVBTlbMCtoLSrAwCQYmNjFR4ero0bN2rv3r2qUaNGgWy3SpUqmjRpkiTpxIkT+vTTTzVw4ED9/vvveuONN677Xi8vL+3du1cbN25U06ZNc+X18vLShQsXcr1vwYIF6t27t8qXL6+BAwcqIiJCBw4c0OzZs/Xll19q3rx5evjhhwvk80nSRx99ZFf08mLnzp2aMGGCWrVq5dDRpsTERLm5Fe5/T14v23fffVeo+wbAESPA5fbv36+ffvpJkydPVlBQkGJjYwts2/7+/oqOjlZ0dLSeeeYZrV+/XlWqVNGHH36orKys6763evXqqlWrlubOnWs3fuHCBX399deKiorK9Z4//vhDjz32mKpVq6Zff/1VEydO1MCBA/Xqq6/q119/VbVq1fTYY49p3759BfYZ3d3d5enpWWDb+ytjjDIyMiRJnp6ecnd3L7R93YiHh4c8PDxctn/gVkAxAlwsNjZW5cqVU1RUlP7+978XaDH6Kx8fHzVr1kznz5/XiRMnbrh+79699fnnn9sdkVm8eLHS09PVs2fPXOu//fbbSk9P16xZsxQUFGS3rEKFCpo5c6bOnz+vt95664b7/vPPP9W1a1eVKVNGFStW1DPPPKPMzMxc613tGqN58+apUaNGKlu2rPz8/FS/fn29//77ki5fF9SjRw9JUuvWrW2nBK9ctxQeHq7OnTtr+fLlaty4sby9vTVz5kzbsv+9xuiK9PR0DRkyRIGBgfLz89Pjjz+uM2fO2K1jsVg0fvz4XO/9323eKNvVrjE6fvy4Bg4cqODgYHl5ealhw4b65JNP7Nb531Oxs2bNUvXq1eXp6akmTZpo06ZNuTIBtzJOpQEuFhsbq27dusnDw0O9e/fW9OnTtWnTJjVp0qRQ9rdv3z6VKlVKAQEBN1z30Ucf1fjx47VmzRq1adNGkhQXF6e2bduqYsWKudZfvHixwsPD9be//e2q22vRooXCw8P1zTffXHe/GRkZatu2rZKSkvTUU0+pcuXK+s9//qNVq1bdMPOKFSvUu3dvtW3bVm+++aYkadeuXVq/fr1GjRqlFi1a6KmnntIHH3ygf/7zn6pTp44k2f5XunzKrHfv3hoyZIgGDRqkWrVqXXefI0aMUEBAgMaPH6/ExERNnz5dBw8etF0snld5yfa/MjIy1KpVK+3du1cjRoxQRESE5s+fr379+iklJUWjRo2yWz8uLk5nz57VkCFDZLFY9NZbb6lbt27at2+fS4+EAUUJxQhwoYSEBO3evVtTpkyRJN1///2qUqWKYmNjC6QYZWdn6+TJk5KkkydPavr06dqyZYu6dOkiHx+fG76/Zs2aaty4seLi4tSmTRulpKTo22+/1UcffZRr3dTUVB05ckQPPfTQdbfZoEEDLVq0SGfPnlXZsmWvus6sWbP0+++/64svvrAdQRk0aJAaNmx4w8zffPON/Pz8tHz5cpUqVSrX8mrVqulvf/ubPvjgA7Vr1+6qd3nt3btXy5YtU4cOHW64P+nyKa6VK1faykXVqlX13HPPafHixXrwwQfztI28Zvtfs2bN0q5du/TZZ5+pT58+kqShQ4eqZcuWevHFFzVgwAC733FSUpL27NmjcuXKSZJq1aqlhx56SMuXL1fnzp3znBMoyTiVBrhQbGysgoOD1bp1a0mXT7f06tVL8+bNU3Z29k1vf/fu3QoKClJQUJDq1KmjKVOmKCoqSh9//HGet/Hoo49qwYIFunjxor788kuVKlXqqhdPnz17VpKuWXauuLI8LS3tmut8++23qlSpkv7+97/bxnx8fDR48OAb5g0ICND58+e1YsWKG657LREREXkuRZI0ePBguyMuw4YNU+nSpfXtt9/mO0NefPvttwoJCVHv3r1tY+7u7nrqqad07tw5rV271m79Xr162UqRJNuRvYK85gso7ihGgItkZ2dr3rx5at26tfbv36+9e/dq7969uueee5ScnKyVK1c6vM2/nrYJDw/XihUr9P3332vdunU6duyYlixZogoVKuR5m4888ohSU1O1dOlSxcbGqnPnzlctP1fGrhSka8lLgTp48KBq1KiR6/Pc6JSWJD355JO6/fbb1bFjR1WpUkUDBgzQsmXLbvi+/xUREeHQ+n99rIGvr68qVapU6LfcHzx4UDVr1sx1p9yVU28HDx60Gw8LC7N7faUk/fV6KOBWxqk0wEVWrVqlo0ePat68eZo3b16u5bGxsWrfvr2ky7fOS7LdHfVX6enpdutdUaZMGUVGRt5UzkqVKqlVq1Z65513tH79en311VdXXc/f31+VKlXSr7/+et3t/frrr7rtttvk5+d3U7mupWLFitq6dauWL1+upUuXaunSpYqJidHjjz+e66Lka/H29i6UbFdTEEcG8+pqpxaly3feAbiMI0aAi8TGxqpixYqaP39+rp/evXvr66+/thWhoKAg+fj4KDEx8arbSkxMlI+Pj0NHghzx6KOP6scff5Sfn586dep0zfU6d+6s/fv3a926dVdd/uOPP+rAgQM3vJ6latWq+uOPP3L9C/tan/+vPDw81KVLF02bNk1//PGHhgwZok8//VR79+6VlPvI2s3as2eP3etz587p6NGjdnfLlStXTikpKXbrXbx4UUePHrUbcyRb1apVtWfPnlzPcdq9e7dtOQDHUIwAF8jIyNCCBQvUuXNn/f3vf8/1M2LECJ09e1aLFi2SdPm/9Nu3b6/FixcrKSnJbltJSUlavHix2rdvf80jAjfr73//u8aNG6dp06Zd9zk6Y8aMkbe3t4YMGaJTp07ZLTt9+rSGDh0qHx8fjRkz5rr769Spk44cOWL3VO0rjwG4kb/u183NTQ0aNJAk2+3+ZcqUkaRcRSW/Zs2aZfdcqOnTp+vSpUvq2LGjbax69er64Ycfcr3vr0eMHMnWqVMnHTt2TJ9//rlt7NKlS5oyZYp8fX3VsmXL/Hwc4JbGqTTABa7clXWtO5aaNWtme9hjr169JEmvv/66mjVrprvvvluDBw9WeHi4Dhw4oFmzZslisej1118vtLz+/v5XfQbPX9WsWVOffPKJ+vTpo/r16+d68vXJkyc1d+5cVa9e/brbGTRokD788EM9/vjjSkhIUKVKlfSf//wnT3fSPfHEEzp9+rTatGmjKlWq6ODBg5oyZYruvPNO27U3d955p0qVKqU333xTqamp8vT0VJs2ba76CIK8uHjxotq2bauePXsqMTFR06ZN0/333283v0888YSGDh2q7t27q127dtq2bZuWL1+e6yifI9kGDx6smTNnql+/fkpISFB4eLi+/PJLrV+/Xu+9994NL4QHcBUGgNN16dLFeHl5mfPnz19znX79+hl3d3dz8uRJ29iuXbtMr169TMWKFU3p0qVNxYoVzSOPPGJ27dqV6/0tW7Y09erVu2GWvn37mjJlyjj83tWrVxtJZv78+bmW/frrr6Z3796mUqVKxt3d3YSEhJjevXub7du33zDPFQcPHjQPPvig8fHxMRUqVDCjRo0yy5YtM5LM6tWr7fJXrVrV9vrLL7807du3NxUrVjQeHh4mLCzMDBkyxBw9etRu+x999JGpVq2aKVWqlN02q1ataqKioq6aqWrVqqZv37621zExMUaSWbt2rRk8eLApV66c8fX1NX369DGnTp2ye292drZ5/vnnTYUKFYyPj4/p0KGD2bt3b65tXi9by5YtTcuWLe3WTU5ONv379zcVKlQwHh4epn79+iYmJsZunf379xtJ5u233871mSSZcePGXfXzArciizFcdQcAACBxjREAAIANxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKxK/AMec3JydOTIEZUtW7bAvwYAAAAUDmOMzp49q8qVK+f6ouTCVOKL0ZEjRxQaGurqGAAAIB8OHTqkKlWqOG1/Jb4YXXkk/v79+1W+fHkXp7m1ZWVl6bvvvlP79u3l7u7u6ji3NOaiaGE+ig7moug4ffq0IiIinP7VNiW+GF05fVa2bFn5+fm5OM2tLSsrSz4+PvLz8+MvHBdjLooW5qPoYC6KjitfzOzsy2C4+BoAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVqVdHQAAABSspKQknTx50tUxbkpaWppL9ksxAgCgBElKSlKt2nV0ISPd1VFuipeXl0v2SzECAKAEOXnypC5kpCuw87NyDwx1dZx8s5zar6NL3nf6filGAACUQO6BofIMqeHqGPlmcjJdsl8uvgYAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsKEYAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYFVkitEbb7whi8Wip59+2jZ24cIFDR8+XIGBgfL19VX37t2VnJzsupAAAKBEKxLFaNOmTZo5c6YaNGhgN/7MM89o8eLFmj9/vtauXasjR46oW7duLkoJAABKOpcXo3PnzqlPnz766KOPVK5cOdt4amqqZs+ercmTJ6tNmzZq1KiRYmJi9NNPP+nnn392YWIAAFBSlXZ1gOHDhysqKkqRkZGaOHGibTwhIUFZWVmKjIy0jdWuXVthYWGKj49Xs2bNrrq9zMxMZWZm2l6npaVJkrKyspSVlVVInwJ5ceX3zzy4HnNRtDAfRUdJmIucnBx5e3vLq7RFHqWMq+PkW46LGopLi9G8efO0ZcsWbdq0KdeyY8eOycPDQwEBAXbjwcHBOnbs2DW3OWnSJE2YMCHX+OrVq+Xj43PTmXHzVqxY4eoIsGIuihbmo+go7nMxd+5c65+yXZrjZqSnh+rRGOfv12XF6NChQxo1apRWrFghLy+vAtvu2LFjNXr0aNvrtLQ0hYaGqnXr1goMDCyw/cBxWVlZWrFihdq1ayd3d3dXx7mlMRdFC/NRdJSEudi2bZtatGih4EffkEdwNVfHybeco4dcsl+XFaOEhAQdP35cd999t20sOztbP/zwgz788EMtX75cFy9eVEpKit1Ro+TkZIWEhFxzu56envL09Mw17u7uXmz/IS9pmIuig7koWpiPoqM4z4Wbm5syMjJ04ZKRyba4Ok6+mUuu2a/LilHbtm21fft2u7H+/furdu3aev755xUaGip3d3etXLlS3bt3lyQlJiYqKSlJzZs3d0VkAABQwrmsGJUtW1Z33HGH3ViZMmUUGBhoGx84cKBGjx6t8uXLy8/PTyNHjlTz5s2veeE1AADAzXD5XWnX8+6778rNzU3du3dXZmamOnTooGnTprk6FgAAKKGKVDFas2aN3WsvLy9NnTpVU6dOdU0gAABwS3H5Ax4BAACKCooRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsKEYAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsSufnTVlZWTp27JjS09MVFBSk8uXLF3QuAAAAp8vzEaOzZ89q+vTpatmypfz8/BQeHq46deooKChIVatW1aBBg7Rp06bCzAoAAFCo8lSMJk+erPDwcMXExCgyMlILFy7U1q1b9fvvvys+Pl7jxo3TpUuX1L59ez3wwAPas2dPYecGAAAocHk6lbZp0yb98MMPqlev3lWXN23aVAMGDNCMGTMUExOjH3/8UTVr1izQoAAAAIUtT8Vo7ty5edqYp6enhg4delOBAAAAXOWm70pLS0vTwoULtWvXroLIAwAA4DIOF6OePXvqww8/lCRlZGSocePG6tmzpxo0aKCvvvqqwAMCAAA4i8PF6IcfftDf/vY3SdLXX38tY4xSUlL0wQcfaOLEiQUeEAAAwFkcLkapqam25xYtW7ZM3bt3l4+Pj6KiorgbDQAAFGsOF6PQ0FDFx8fr/PnzWrZsmdq3by9JOnPmjLy8vAo8IAAAgLM4/OTrp59+Wn369JGvr6/CwsLUqlUrSZdPsdWvX7+g8wEAADiNw8XoySefVNOmTXXo0CG1a9dObm6XDzpVq1aNa4wAAECxlq/vSmvcuLEaNGig/fv3q3r16ipdurSioqIKOhsAAIBTOXyNUXp6ugYOHCgfHx/Vq1dPSUlJkqSRI0fqjTfeKPCAAAAAzuJwMRo7dqy2bdumNWvW2F1sHRkZqc8//7xAwwEAADiTw6fSFi5cqM8//1zNmjWTxWKxjderV09//PFHgYYDAABwJoePGJ04cUIVK1bMNX7+/Hm7ogQAAFDcOFyMGjdurG+++cb2+koZ+ve//63mzZsXXDIAAAAnc/hU2uuvv66OHTtq586dunTpkt5//33t3LlTP/30k9auXVsYGQEAAJzC4SNG999/v7Zu3apLly6pfv36+u6771SxYkXFx8erUaNGhZERAADAKfL1HKPq1avro48+KugsAAAALuVwMUpLS7vquMVikaenpzw8PG46FAAAgCs4XIwCAgKue/dZlSpV1K9fP40bN872dSEAAADFgcPFaM6cOXrhhRfUr18/NW3aVJK0ceNGffLJJ3rxxRd14sQJ/etf/5Knp6f++c9/FnhgAACAwuJwMfrkk0/0zjvvqGfPnraxLl26qH79+po5c6ZWrlypsLAwvfbaaxQjAABQrDh8ruunn37SXXfdlWv8rrvuUnx8vKTLd65d+Q41AACA4sLhYhQaGqrZs2fnGp89e7ZCQ0MlSadOnVK5cuVuPh0AAIATOXwq7V//+pd69OihpUuXqkmTJpKkzZs3a/fu3fryyy8lSZs2bVKvXr0KNikAAEAhc7gYPfjgg0pMTNTMmTOVmJgoSerYsaMWLlyo8PBwSdKwYcMKNCQAAIAz5OsBj+Hh4Zo0aVJBZwEAAHCpfBUjSUpPT1dSUpIuXrxoN96gQYObDgUAAOAKDhejEydOqH///lq6dOlVl2dnZ990KAAAAFdw+K60p59+WikpKdqwYYO8vb21bNkyffLJJ6pZs6YWLVpUGBkBAACcwuEjRqtWrdJ///tfNW7cWG5ubqpataratWsnPz8/TZo0SVFRUYWREwAAoNA5fMTo/PnzqlixoiSpXLlyOnHihCSpfv362rJlS8GmAwAAcCKHi1GtWrVst+k3bNhQM2fO1OHDhzVjxgxVqlSpwAMCAAA4i8PFaNSoUTp69Kgkady4cVq6dKnCwsL0wQcf6PXXX3doW9OnT1eDBg3k5+cnPz8/NW/e3O6i7gsXLmj48OEKDAyUr6+vunfvruTkZEcjAwAA5InD1xhFR0fb/tyoUSMdPHhQu3fvVlhYmCpUqODQtqpUqaI33nhDNWvWlDFGn3zyiR566CH98ssvqlevnp555hl98803mj9/vvz9/TVixAh169ZN69evdzQ2AADADeX7OUZX+Pj46O67787Xe7t06WL3+rXXXtP06dP1888/q0qVKpo9e7bi4uLUpk0bSVJMTIzq1Kmjn3/+Wc2aNbvZ6AAAAHYcLkbGGH355ZdavXq1jh8/rpycHLvlCxYsyFeQ7OxszZ8/X+fPn1fz5s2VkJCgrKwsRUZG2tapXbu2wsLCFB8ff81ilJmZqczMTNvrtLQ0SVJWVpaysrLylQ0F48rvn3lwPeaiaGE+io6SMBc5OTny9vaWV2mLPEoZV8fJt5ybPnSTPw7v9umnn9bMmTPVunVrBQcHy2Kx3FSA7du3q3nz5rpw4YJ8fX319ddfq27dutq6das8PDwUEBBgt35wcLCOHTt2ze1NmjRJEyZMyDW+evVq+fj43FRWFIwVK1a4OgKsmIuihfkoOor7XMydO9f6p+L70OX09FA9GuP8/TpcjP7zn/9owYIF6tSpU4EEqFWrlrZu3arU1FR9+eWX6tu3r9auXZvv7Y0dO1ajR4+2vU5LS1NoaKhat26twMDAgoiMfMrKytKKFSvUrl07ubu7uzrOLY25KFqYj6KjJMzFtm3b1KJFCwU/+oY8gqu5Ok6+5Rw95JL9OlyM/P39Va1awf2iPTw8VKNGDUmXL+betGmT3n//ffXq1UsXL15USkqK3VGj5ORkhYSEXHN7np6e8vT0zDXu7u5ebP8hL2mYi6KDuShamI+iozjPhZubmzIyMnThkpHJvrmzOq5kLrlmvw7frj9+/HhNmDBBGRkZhZFHOTk5yszMVKNGjeTu7q6VK1faliUmJiopKUnNmzcvlH0DAIBbm8NHjHr27Km5c+eqYsWKCg8Pz9WoHXn69dixY9WxY0eFhYXp7NmziouL05o1a7R8+XL5+/tr4MCBGj16tMqXLy8/Pz+NHDlSzZs35440AABQKBwuRn379lVCQoKio6Nv+uLr48eP6/HHH9fRo0fl7++vBg0aaPny5WrXrp0k6d1335Wbm5u6d++uzMxMdejQQdOmTcv3/gAAAK7H4WL0zTffaPny5br//vtveuezZ8++7nIvLy9NnTpVU6dOvel9AQAA3IjD1xiFhobKz8+vMLIAAAC4lMPF6J133tFzzz2nAwcOFEIcAAAA18nXd6Wlp6erevXq8vHxyXXx9enTpwssHAAAgDM5XIzee++9QogBAADgevm6Kw0AAKAkylMxSktLs11wfeVLWa+FC7MBAEBxladiVK5cOR09elQVK1ZUQEDAVZ9dZIyRxWJRdnbx/cI6AABwa8tTMVq1apXKly8v6fK31AMAAJREeSpGLVu2vOqfAQAAShKHn2MEAABQUlGMAAAArChGAAAAVnkqRosWLVJWVlZhZwEAAHCpPBWjhx9+WCkpKZKkUqVK6fjx44WZCQAAwCXyVIyCgoL0888/S/r/zysCAAAoafJ0u/7QoUP10EMPyWKxyGKxKCQk5Jrr8oBHAABQXOWpGI0fP16PPPKI9u7dqwcffFAxMTEKCAgo5GgAAADOlecvka1du7Zq166tcePGqUePHvLx8SnMXAAAAE6X52J0xbhx4yRJJ06cUGJioiSpVq1aCgoKKthkAAAATubwc4zS09M1YMAAVa5cWS1atFCLFi1UuXJlDRw4UOnp6YWREQAAwCkcLkbPPPOM1q5dq0WLFiklJUUpKSn673//q7Vr1+rZZ58tjIwAAABO4fCptK+++kpffvmlWrVqZRvr1KmTvL291bNnT02fPr0g8wEAADhNvk6lBQcH5xqvWLEip9IAAECx5nAxat68ucaNG6cLFy7YxjIyMjRhwgQ1b968QMMBAAA4k8On0t5//3116NBBVapUUcOGDSVJ27Ztk5eXl5YvX17gAQEAAJzF4WJ0xx13aM+ePYqNjdXu3bslSb1791afPn3k7e1d4AEBAACcxeFiJEk+Pj4aNGhQQWcBAABwKYevMQIAACipKEYAAABWFCMAAAArh4pRdna2fvjhB6WkpBRSHAAAANdxqBiVKlVK7du315kzZworDwAAgMs4fCrtjjvu0L59+wojCwAAgEs5XIwmTpyof/zjH1qyZImOHj2qtLQ0ux8AAIDiyuHnGHXq1EmS9OCDD8pisdjGjTGyWCzKzs4uuHQAAABO5HAxWr16dWHkAAAAcDmHi1HLli0LIwcAAIDL5es5Rj/++KOio6N177336vDhw5Kk//znP1q3bl2BhgMAAHAmh4vRV199pQ4dOsjb21tbtmxRZmamJCk1NVWvv/56gQcEAABwlnzdlTZjxgx99NFHcnd3t43fd9992rJlS4GGAwAAcCaHi1FiYqJatGiRa9zf358nYgMAgGLN4WIUEhKivXv35hpft26dqlWrViChAAAAXMHhYjRo0CCNGjVKGzZskMVi0ZEjRxQbG6t//OMfGjZsWGFkBAAAcAqHb9f/v//7P+Xk5Kht27ZKT09XixYt5OnpqX/84x8aOXJkYWQEAABwCoeLkcVi0QsvvKAxY8Zo7969OnfunOrWrStfX9/CyAcAAOA0DhejKzw8PFS2bFmVLVuWUgQAAEoEh68xunTpkl566SX5+/srPDxc4eHh8vf314svvqisrKzCyAgAAOAUDh8xGjlypBYsWKC33npLzZs3lyTFx8dr/PjxOnXqlKZPn17gIQEAAJzB4WIUFxenefPmqWPHjraxBg0aKDQ0VL1796YYAQCAYsvhU2menp4KDw/PNR4RESEPD4+CyAQAAOASDhejESNG6NVXX7V9R5okZWZm6rXXXtOIESMKNBwAAIAz5elUWrdu3exef//996pSpYoaNmwoSdq2bZsuXryotm3bFnxCAAAAJ8lTMfL397d73b17d7vXoaGhBZcIAADARfJUjGJiYgo7BwAAgMs5fI0RAABASeXw7fqnTp3Syy+/rNWrV+v48ePKycmxW3769OkCCwcAAOBMDhejxx57THv37tXAgQMVHBwsi8VSGLkAAACczuFi9OOPP2rdunW2O9IAAABKCoevMapdu7YyMjIKIwsAAIBLOVyMpk2bphdeeEFr167VqVOnlJaWZvcDAABQXDl8Ki0gIEBpaWlq06aN3bgxRhaLRdnZ2QUWDgAAwJkcLkZ9+vSRu7u74uLiuPgaAACUKA4Xox07duiXX35RrVq1CiMPAACAyzh8jVHjxo116NChwsgCAADgUg4fMRo5cqRGjRqlMWPGqH79+nJ3d7db3qBBgwILBwAA4EwOF6NevXpJkgYMGGAbs1gsXHwNAACKPYeL0f79+wsjBwAAgMs5fI1R1apVr/vjiEmTJqlJkyYqW7asKlasqK5duyoxMdFunQsXLmj48OEKDAyUr6+vunfvruTkZEdjAwAA3JDDR4w+/fTT6y5//PHH87yttWvXavjw4WrSpIkuXbqkf/7zn2rfvr127typMmXKSJKeeeYZffPNN5o/f778/f01YsQIdevWTevXr3c0OgAAwHU5XIxGjRpl9zorK0vp6eny8PCQj4+PQ8Vo2bJldq/nzJmjihUrKiEhQS1atFBqaqpmz56tuLg42wMlY2JiVKdOHf38889q1qyZo/EBAACuyeFidObMmVxje/bs0bBhwzRmzJibCpOamipJKl++vCQpISFBWVlZioyMtK1Tu3ZthYWFKT4+/qrFKDMzU5mZmbbXV76mJCsrS1lZWTeVDzfnyu+feXA95qJoYT6KjpIwFzk5OfL29pZXaYs8ShlXx8m3HIcbSsGwGGMK5Le2efNmRUdHa/fu3fl6f05Ojh588EGlpKRo3bp1kqS4uDj179/fruhIUtOmTdW6dWu9+eabubYzfvx4TZgwIdd4XFycfHx88pUNAAA4V3p6uh599FGlpqbKz8/PafstsD5WunRpHTlyJN/vHz58uHbs2GErRfk1duxYjR492vY6LS1NoaGhat26tQIDA29q27g5WVlZWrFihdq1a5fr+VdwLuaiaGE+io6SMBfbtm1TixYtFPzoG/IIrubqOPmWc9Q1D5N2uBgtWrTI7rUxRkePHtWHH36o++67L18hRowYoSVLluiHH35QlSpVbOMhISG6ePGiUlJSFBAQYBtPTk5WSEjIVbfl6ekpT0/PXOPu7u7F9h/ykoa5KDqYi6KF+Sg6ivNcuLm5KSMjQxcuGZns4vt9puaSa/brcDHq2rWr3WuLxaKgoCC1adNG77zzjkPbMsZo5MiR+vrrr7VmzRpFRETYLW/UqJHc3d21cuVKde/eXZKUmJiopKQkNW/e3NHoAAAA1+VwMcrJySmwnQ8fPlxxcXH673//q7Jly+rYsWOSJH9/f3l7e8vf318DBw7U6NGjVb58efn5+WnkyJFq3rw5d6QBAIAC56Jrvi+bPn26JKlVq1Z24zExMerXr58k6d1335Wbm5u6d++uzMxMdejQQdOmTXNyUgAAcCtwuBhlZ2drzpw5WrlypY4fP57rCNKqVavyvK283BDn5eWlqVOnaurUqY5GBQAAcEi+HvA4Z84cRUVF6Y477pDFUnwv7AIAAPhfDhejefPm6YsvvlCnTp0KIw8AAIDLOPwlsh4eHqpRo0ZhZAEAAHAph4vRs88+q/fffz9P1wcBAAAUJw6fSlu3bp1Wr16tpUuXql69erkegLVgwYICCwcAAOBMDhejgIAAPfzww4WRBQAAwKUcLkYxMTGFkQMAAMDlHL7GCAAAoKTKUzF64IEH9PPPP99wvbNnz+rNN9/kYYwAAKBYytOptB49eqh79+7y9/dXly5d1LhxY1WuXFleXl46c+aMdu7cqXXr1unbb79VVFSU3n777cLODQAAUODyVIwGDhyo6OhozZ8/X59//rlmzZql1NRUSZLFYlHdunXVoUMHbdq0SXXq1CnUwAAAAIUlzxdfe3p6Kjo6WtHR0ZKk1NRUZWRkKDAwMNct+wAAAMWRw3elXeHv7y9/f/+CzAIAAOBS3JUGAABgRTECAACwohgBAABYUYwAAACsHC5G1apV06lTp3KNp6SkqFq1agUSCgAAwBUcLkYHDhxQdnZ2rvHMzEwdPny4QEIBAAC4Qp5v11+0aJHtz8uXL7e7VT87O1srV65UeHh4gYYDAABwpjwXo65du0q6/KTrvn372i1zd3dXeHi43nnnnQINBwAA4Ex5LkY5OTmSpIiICG3atEkVKlQotFAAAACu4PCTr/fv318YOQAAAFwuX18JsnLlSq1cuVLHjx+3HUm64uOPPy6QYAAAAM7mcDGaMGGCXnnlFTVu3FiVKlWSxWIpjFwAAABO53AxmjFjhubMmaPHHnusMPIAAAC4jMPPMbp48aLuvffewsgCAADgUg4XoyeeeEJxcXGFkQUAAMClHD6VduHCBc2aNUvff/+9GjRoIHd3d7vlkydPLrBwAAAAzuRwMfr111915513SpJ27Nhht4wLsQEAQHHmcDFavXp1YeQAAABwOYevMQIAACipHD5i1Lp16+ueMlu1atVNBQIAAHAVh4vRleuLrsjKytLWrVu1Y8eOXF8uCwAAUJw4XIzefffdq46PHz9e586du+lAAAAArlJg1xhFR0fzPWkAAKBYK7BiFB8fLy8vr4LaHAAAgNM5fCqtW7dudq+NMTp69Kg2b96sl156qcCCAQAAOJvDxcjf39/utZubm2rVqqVXXnlF7du3L7BgAAAAzuZwMYqJiSmMHAAAAC7ncDG6IiEhQbt27ZIk1atXT3fddVeBhQIAAHAFh4vR8ePH9cgjj2jNmjUKCAiQJKWkpKh169aaN2+egoKCCjojAACAUzh8V9rIkSN19uxZ/fbbbzp9+rROnz6tHTt2KC0tTU899VRhZAQAAHAKh48YLVu2TN9//73q1KljG6tbt66mTp3KxdcAAKBYc/iIUU5Ojtzd3XONu7u7Kycnp0BCAQAAuILDxahNmzYaNWqUjhw5Yhs7fPiwnnnmGbVt27ZAwwEAADiTw8Xoww8/VFpamsLDw1W9enVVr15dERERSktL05QpUwojIwAAgFM4fI1RaGiotmzZou+//167d++WJNWpU0eRkZEFHg4AAMCZ8vUcI4vFonbt2qldu3YFnQcAAMBl8nwqbdWqVapbt67S0tJyLUtNTVW9evX0448/Fmg4AAAAZ8pzMXrvvfc0aNAg+fn55Vrm7++vIUOGaPLkyQUaDgAAwJnyXIy2bdumBx544JrL27dvr4SEhAIJBQAA4Ap5LkbJyclXfX7RFaVLl9aJEycKJBQAAIAr5LkY3XbbbdqxY8c1l//666+qVKlSgYQCAABwhTwXo06dOumll17ShQsXci3LyMjQuHHj1Llz5wINBwAA4Ex5vl3/xRdf1IIFC3T77bdrxIgRqlWrliRp9+7dmjp1qrKzs/XCCy8UWlAAAIDCludiFBwcrJ9++knDhg3T2LFjZYyRdPmZRh06dNDUqVMVHBxcaEEBAAAKm0MPeKxataq+/fZbnTlzRnv37pUxRjVr1lS5cuUKKx8AAIDT5OvJ1+XKlVOTJk0KOgsAAIBLOfwlsgAAACUVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuXFqMffvhBXbp0UeXKlWWxWLRw4UK75cYYvfzyy6pUqZK8vb0VGRmpPXv2uCYsAAAo8VxajM6fP6+GDRtq6tSpV13+1ltv6YMPPtCMGTO0YcMGlSlTRh06dNCFCxecnBQAANwK8vWVIAWlY8eO6tix41WXGWP03nvv6cUXX9RDDz0kSfr0008VHByshQsX6pFHHnFmVAAAcAsostcY7d+/X8eOHVNkZKRtzN/fX/fcc4/i4+NdmAwAAJRULj1idD3Hjh2TJAUHB9uNBwcH25ZdTWZmpjIzM22v09LSJElZWVnKysoqhKTIqyu/f+bB9ZiLooX5KDpKwlzk5OTI29tbXqUt8ihlXB0n33Jc1FCKbDHKr0mTJmnChAm5xlevXi0fHx8XJMJfrVixwtURYMVcFC3MR9FR3Odi7ty51j9luzTHzUhPD9WjMc7fb5EtRiEhIZKk5ORkVapUyTaenJysO++885rvGzt2rEaPHm17nZaWptDQULVu3VqBgYGFlhc3lpWVpRUrVqhdu3Zyd3d3dZxbGnNRtDAfRUdJmItt27apRYsWCn70DXkEV3N1nHzLOXrIJfstssUoIiJCISEhWrlypa0IpaWlacOGDRo2bNg13+fp6SlPT89c4+7u7sX2H/KShrkoOpiLooX5KDqK81y4ubkpIyNDFy4ZmWyLq+Pkm7nkmv26tBidO3dOe/futb3ev3+/tm7dqvLlyyssLExPP/20Jk6cqJo1ayoiIkIvvfSSKleurK5du7ouNAAAKLFcWow2b96s1q1b215fOQXWt29fzZkzR88995zOnz+vwYMHKyUlRffff7+WLVsmLy8vV0UGAAAlmEuLUatWrWTMta+Yt1gseuWVV/TKK684MRUAALhVFdlrjAAgL5KSknTy5ElXx7gpOTk5ro4AwIpiBKDYSkpKUq3adXQhI93VUW6Kt7e35s6dqz///FMRERGujgPc0ihGAIqtkydP6kJGugI7Pyv3wFBXx8m3UmlHJEmnTp2iGAEuRjECUOy5B4bKM6SGq2Pkm6V08b2lGihpiux3pQEAADgbxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsOJLZAEA+Itt27bJza14HjvYtWuXqyMUaxQjAACs/vzzT0lSixYtlJGR4eI0cAWKEQAAVqdOnZIklX9gpLL9Krs4Tf5k7Nus1B8/c3WMYotiBADAX7iXv02lK1R3dYx8yTp1yNURirXieQIVAACgEFCMAAAArChGAAAAVhQjAAAAKy6+htMV5+eDXFGhQgWFhYW5OsZNK+5zwfNaipakpCSdPHnS1TFuSmJionx9fV0dAy5EMYLTlKTng3h5+yhx965iW45K0lygaEhKSlKt2nV0ISPd1VFuire3t+bOnevqGHAhihGcpiQ8H0S6fCvsqSXv6OTJk8W2GJWUueB5LUXHyZMndSEjXYGdn5V7YKir4+Sb+XOrqyPAxShGcLri/HyQkqa4zwXPayl63AND5RlSw9Ux8u1S2hFXR4CLFd+LCwAAAAoYxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYHXLfFfa9u3b5efn5+oYN6VChQrF9ktLS6Jdu3a5OkK+JSYmytfX19Ux8BeJiYlycyue/71anP//APyvW6YYdezYURcuXHB1jJvi5e2jxN27KEculn3ujGSxKDo62tVR8s3b21tz5851dQxYZZ9PkVRVgwYNUkZGhqvjALe0W6YYlYscIhMY4eoY+ZZ16pBOLXlHJ0+epBi5WE7mOckYBXZ+Vu6Boa6Oky/mz62ujoD/kZN5XpJU/oGRyvar7OI0+ZOxb7NSf/zM1TGAm3bLFCP3cpVlCanh6hgoQdwDQ+VZTP+ZupR2xNURcBXu5W9T6QrVXR0jX7JOHXJ1BKBAFM+T2QAAAIWAYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYlXZ1ADhm165dro6Qb4mJifL19XV1DAAAroliVExknzsjWSyKjo52dZR88/b21ty5c10dAwCAa6IYFRM5meckYxTY+Vm5B4a6Ok6+mD+3ujoCAADXRTEqZtwDQ+UZUsPVMfLlUtoRV0cAAOC6isXF11OnTlV4eLi8vLx0zz33aOPGja6OBAAASqAiX4w+//xzjR49WuPGjdOWLVvUsGFDdejQQcePH3d1NAAAUMIU+WI0efJkDRo0SP3791fdunU1Y8YM+fj46OOPP3Z1NAAAUMIU6WJ08eJFJSQkKDIy0jbm5uamyMhIxcfHuzAZAAAoiYr0xdcnT55Udna2goOD7caDg4O1e/fuq74nMzNTmZmZttepqamSJMuZJJnCi1ro3M4elZeXlyyn9svkZN74DUWQ29ljSk9Pl+X0QeVcvODqOPnGXBQdJWEupJIxH8xF0VFS5sJyJkmSZIyT/+1tirDDhw8bSeann36yGx8zZoxp2rTpVd8zbtw4I4kffvjhhx9++CkBP3/88YczKodNkT5iVKFCBZUqVUrJycl248nJyQoJCbnqe8aOHavRo0fbXqekpKhq1apKSkqSv79/oebF9aWlpSk0NFSHDh2Sn5+fq+Pc0piLooX5KDqYi6IjNTVVYWFhKl++vFP3W6SLkYeHhxo1aqSVK1eqa9eukqScnBytXLlSI0aMuOp7PD095enpmWvc39+ff8iLCD8/P+aiiGAuihbmo+hgLooONzfnXg5dpIuRJI0ePVp9+/ZV48aN1bRpU7333ns6f/68+vfv7+poAACghCnyxahXr146ceKEXn75ZR07dkx33nmnli1bluuCbAAAgJtV5IuRJI0YMeKap85uxNPTU+PGjbvq6TU4F3NRdDAXRQvzUXQwF0WHq+bCYoyz74MDAAAomor0Ax4BAACciWIEAABgRTECAACwohgBAABYlYhiNHXqVIWHh8vLy0v33HOPNm7caFs2evRolS9fXqGhoYqNjbV73/z589WlSxdnxy0RJk2apCZNmqhs2bKqWLGiunbtqsTERLt1Lly4oOHDhyswMFC+vr7q3r273VPMT58+rS5dusjX11d33XWXfvnlF7v3Dx8+XO+8845TPk9J8sYbb8hisejpp5+2jTEXznP48GFFR0crMDBQ3t7eql+/vjZv3mxbbozRyy+/rEqVKsnb21uRkZHas2ePbXlmZqYee+wx+fn56fbbb9f3339vt/23335bI0eOdNrnKa6ys7P10ksvKSIiQt7e3qpevbpeffVVu+/dYi4Kzw8//KAuXbqocuXKslgsWrhwod3yG/3upct/L/Xp00d+fn4KCAjQwIEDde7cOdvyAwcOqEWLFipTpoxatGihAwcO2L2/c+fO+uqrrxwP79QvICkE8+bNMx4eHubjjz82v/32mxk0aJAJCAgwycnJZtGiRSY4ONhs2rTJxMXFGS8vL3PixAljjDEpKSmmZs2a5uDBgy7+BMVThw4dTExMjNmxY4fZunWr6dSpkwkLCzPnzp2zrTN06FATGhpqVq5caTZv3myaNWtm7r33Xtvy0aNHm5YtW5rExETz9NNPm0aNGtmWxcfHm0aNGplLly459XMVdxs3bjTh4eGmQYMGZtSoUbZx5sI5Tp8+bapWrWr69etnNmzYYPbt22eWL19u9u7da1vnjTfeMP7+/mbhwoVm27Zt5sEHHzQREREmIyPDGGPMBx98YOrUqWN27Nhh3n77bRMUFGRycnKMMcbs27fP1KxZ06Smprrk8xUnr732mgkMDDRLliwx+/fvN/Pnzze+vr7m/ffft63DXBSeb7/91rzwwgtmwYIFRpL5+uuv7Zbf6HdvjDEPPPCAadiwofn555/Njz/+aGrUqGF69+5tW96tWzfzyCOPmN9//9307NnTdO/e3bZs3rx5pkuXLvnKXuyLUdOmTc3w4cNtr7Ozs03lypXNpEmTzJtvvml69eplW1axYkWzceNGY4wxgwcPNpMnT3Z63pLq+PHjRpJZu3atMeZy8XR3dzfz58+3rbNr1y4jycTHxxtjjOnYsaOZPn26McaYnTt3Gh8fH2OMMRcvXjQNGzY0mzZtcvKnKN7Onj1ratasaVasWGFatmxpK0bMhfM8//zz5v7777/m8pycHBMSEmLefvtt21hKSorx9PQ0c+fONcYYM2zYMPP8888bY4xJT083kszx48eNMZf/g2TBggWF+AlKjqioKDNgwAC7sW7dupk+ffoYY5gLZ/prMcrL737nzp1Gkt3fPUuXLjUWi8UcPnzYGGNMnTp1zNKlS40xl4tY3bp1jTHGnDlzxtSoUcMkJSXlK2+xPpV28eJFJSQkKDIy0jbm5uamyMhIxcfHq2HDhtq8ebPOnDmjhIQEZWRkqEaNGlq3bp22bNmip556yoXpS5bU1FRJsn3ZX0JCgrKysuzmpnbt2goLC1N8fLwkqWHDhlq1apUuXbqk5cuXq0GDBpKkt956S61atVLjxo2d/CmKt+HDhysqKsrudy4xF860aNEiNW7cWD169FDFihV111136aOPPrIt379/v44dO2Y3F/7+/rrnnnvs5mLdunXKyMjQ8uXLValSJVWoUEGxsbHy8vLSww8/7PTPVRzde++9WrlypX7//XdJ0rZt27Ru3Tp17NhREnPhSnn53cfHxysgIMDu757IyEi5ublpw4YNki7Pz/fff6+cnBx99913tr+3xowZo+HDhys0NDR/AfNVp4qIw4cPG0nmp59+shsfM2aMadq0qTHGmHHjxpnq1aubO+64wyxYsMBkZmaaO+64w2zevNlMmTLF3H777ebee+81O3bscMVHKBGys7NNVFSUue+++2xjsbGxxsPDI9e6TZo0Mc8995wx5vJ/IfTu3duEhYWZFi1amN9++838/vvvpmbNmubkyZNmyJAhJiIiwvTo0cOkpKQ47fMUR3PnzjV33HGH7TD0/x4xYi6cx9PT03h6epqxY8eaLVu2mJkzZxovLy8zZ84cY4wx69evN5LMkSNH7N7Xo0cP07NnT2PM5aN0Tz75pAkPDzeNGzc2P/74ozl16pSpVq2aSUpKMi+88IKpXr26ad++vfnzzz+d/hmLi+zsbPP8888bi8ViSpcubSwWi3n99ddty5kL59Ffjhjl5Xf/2muvmdtvvz3XtoKCgsy0adOMMcb8+eefJioqyoSGhpqoqCjz559/mrVr15rGjRubU6dOmR49epiIiAgzZMgQk5mZmee8xeIrQW7G+PHjNX78eNvrCRMmKDIyUu7u7po4caK2b9+uJUuW6PHHH1dCQoLrghZjw4cP144dO7Ru3TqH3ufv76+4uDi7sTZt2ujtt99WbGys9u3bp8TERA0aNEivvPIKF/9ew6FDhzRq1CitWLFCXl5e+doGc1EwcnJy1LhxY73++uuSpLvuuks7duzQjBkz1Ldv3zxtw93dXVOnTrUb69+/v5566in98ssvWrhwobZt26a33npLTz31VP4uLr0FfPHFF4qNjVVcXJzq1aunrVu36umnn1blypWZixLitttu05IlS2yvMzMz1aFDB33yySeaOHGiypYtq8TERD3wwAOaOXNmni+UL9an0ipUqKBSpUrZ3V0jScnJyQoJCcm1/u7du/XZZ5/p1Vdf1Zo1a9SiRQsFBQWpZ8+e2rJli86ePeus6CXGiBEjtGTJEq1evVpVqlSxjYeEhOjixYtKSUmxW/9acyNJMTExCggI0EMPPaQ1a9aoa9eucnd3V48ePbRmzZpC/BTFW0JCgo4fP667775bpUuXVunSpbV27Vp98MEHKl26tIKDg5kLJ6lUqZLq1q1rN1anTh0lJSVJku33nde/syRp9erV+u233zRixAitWbNGnTp1UpkyZdSzZ0/m4jrGjBmj//u//9Mjjzyi+vXr67HHHtMzzzyjSZMmSWIuXCkvv/uQkBAdP37cbvmlS5d0+vTpa87P66+/rvbt26tRo0Zas2aNunfvLnd3d3Xr1s2h+SnWxcjDw0ONGjXSypUrbWM5OTlauXKlmjdvbreuMUZDhgzR5MmT5evrq+zsbGVlZUmS7X+zs7OdF76YM8ZoxIgR+vrrr7Vq1SpFRETYLW/UqJHc3d3t5iYxMVFJSUm55kaSTpw4oVdeeUVTpkyRpFzzw9xcW9u2bbV9+3Zt3brV9tO4cWP16dPH9mfmwjnuu+++XI+t+P3331W1alVJUkREhEJCQuzmIi0tTRs2bLjqXFx5zMLMmTNVqlQp5sIB6enpcnOz/1dcqVKllJOTI4m5cKW8/O6bN2+ulJQUuzM5q1atUk5Oju65555c29y1a5fi4uL06quvSrrJv7ccPllYxMybN894enqaOXPmmJ07d5rBgwebgIAAc+zYMbv1Zs2aZXcr34YNG4yfn5+Jj483L7/8su1qduTNsGHDjL+/v1mzZo05evSo7Sc9Pd22ztChQ01YWJhZtWqV2bx5s2nevLlp3rz5Vbf36KOPmilTpthev/nmm6ZRo0Zm586dpmPHjubJJ58s9M9UkvzvNUbGMBfOsnHjRlO6dGnz2muvmT179pjY2Fjj4+NjPvvsM9s6b7zxhgkICDD//e9/za+//moeeuihXLcpX/HPf/7TPPvss7bXn3/+uQkLCzPbtm0zAwcONJ06dXLK5yqO+vbta2677Tbb7foLFiwwFSpUsF1XZwxzUZjOnj1rfvnlF/PLL78YSWby5Mnml19+sT0iJy+/+wceeMDcddddZsOGDWbdunWmZs2adrfrX5GTk2Puv/9+s3jxYtvYsGHDTFRUlNm5c6e56667zFtvvZXn7MW+GBljzJQpU0xYWJjx8PAwTZs2NT///LPd8mPHjpmqVavabvG7YsKECaZ8+fKmdu3aZsOGDc6MXOxJuupPTEyMbZ2MjAzz5JNPmnLlyhkfHx/z8MMPm6NHj+ba1rJly0zTpk1Ndna2bez8+fOmR48epmzZsqZt27YmOTnZGR+rxPhrMWIunGfx4sXmjjvuMJ6enqZ27dpm1qxZdstzcnLMSy+9ZIKDg42np6dp27atSUxMzLWd7du3mxo1atg9Gyw7O9sMGzbM+Pn5mSZNmpg9e/YU+ucprtLS0syoUaNMWFiY8fLyMtWqVTMvvPCC3UW4zEXhWb169VX/HdG3b19jTN5+96dOnTK9e/c2vr6+xs/Pz/Tv39+cPXs2175mzJhhd+DDGGOSk5NN27ZtTdmyZU2PHj3M+fPn85zdYsz/PAYUAADgFlasrzECAAAoSBQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAQJe/cNpischisei99967qW21atXKtq2tW7cWSD4AzkExAnBD8fHxKlWqlKKionItW7NmjSwWS64vqZWk8PBwu5JxpSxYLBb5+/vrvvvu06pVq2zL+/Xrp65du9q9tlgsGjp0aK5tDx8+XBaLRf369bMbP3TokAYMGKDKlSvLw8NDVatW1ahRo3Tq1Kkbfs569erp6NGjGjx4sG1s9OjRKl++vEJDQxUbG2u3/vz589WlS5dc21mwYIE2btx4w/0BKHooRgBuaPbs2Ro5cqR++OEHHTly5Ka2FRMTo6NHj2r9+vWqUKGCOnfurH379l1z/dDQUM2bN08ZGRm2sQsXLiguLk5hYWF26+7bt0+NGzfWnj17NHfuXO3du1czZsywfbH06dOnr5utdOnSCgkJkY+PjyRp8eLFiouL03fffae33npLTzzxhE6ePClJSk1N1QsvvKCpU6fm2k758uUVFBSU598JgKKDYgTgus6dO6fPP/9cw4YNU1RUlObMmXNT2wsICFBISIjuuOMOTZ8+XRkZGVqxYsU117/77rsVGhqqBQsW2MYWLFigsLAw3XXXXXbrDh8+XB4eHvruu+/UsmVLhYWFqWPHjvr+++91+PBhvfDCCw5l3bVrl1q1aqXGjRurd+/e8vPz0/79+yVJzz33nIYNG5arnAEo3ihGAK7riy++UO3atVWrVi1FR0fr448/VkF9xaK3t7ck6eLFi9ddb8CAAYqJibG9/vjjj9W/f3+7dU6fPq3ly5frySeftG33ipCQEPXp00eff/65Q9kbNmyozZs368yZM0pISFBGRoZq1KihdevWacuWLXrqqafyvC0AxQPFCMB1zZ49W9HR0ZKkBx54QKmpqVq7du1Nbzc9PV0vvviiSpUqpZYtW1533ejoaK1bt04HDx7UwYMHtX79elumK/bs2SNjjOrUqXPVbdSpU0dnzpzRiRMn8pyxQ4cOio6OVpMmTdSvXz998sknKlOmjIYNG6YZM2Zo+vTpqlWrlu677z799ttved4ugKKrtKsDACi6EhMTtXHjRn399deSLl+D06tXL82ePVutWrXK1zZ79+6tUqVKKSMjQ0FBQZo9e7YaNGhw3fcEBQXZTuMZYxQVFaUKFSpcdd2COpp1xfjx4zV+/Hjb6wkTJigyMlLu7u6aOHGitm/friVLlujxxx9XQkJCge4bgPNRjABc0+zZs3Xp0iVVrlzZNmaMkaenpz788EP5+/vLz89P0uWLkQMCAuzen5KSIn9/f7uxd999V5GRkfL393foAuUBAwZoxIgRknTVC55r1Kghi8WiXbt26eGHH861fNeuXSpXrtxNXRS9e/duffbZZ/rll1/08ccfq0WLFgoKClLPnj01YMAAnT17VmXLls339gG4HqfSAFzVpUuX9Omnn+qdd97R1q1bbT/btm1T5cqVNXfuXElSzZo15ebmlutoyb59+5Samqrbb7/dbjwkJEQ1atRwuKA88MADunjxorKystShQ4dcywMDA9WuXTtNmzbN7g42STp27JhiY2PVq1cvWSwWh/Z7hTFGQ4YM0eTJk+Xr66vs7GxlZWVJku1/s7Oz87VtAEUHR4wAXNWSJUt05swZDRw4MNdRn+7du2v27NkaOnSoypYtqyeeeELPPvusSpcurfr16+vQoUN6/vnn1axZM917770FkqdUqVLatWuX7c9X8+GHH+ree+9Vhw4dNHHiREVEROi3337TmDFjdNttt+m1117L9/7//e9/KygoyPbcovvuu0/jx4/Xzz//rKVLl6pu3bq5jpgBKH44YgTgqmbPnm075fVX3bt31+bNm/Xrr79Kkt5//3317dtXzz//vOrVq6d+/fqpQYMGWrx4cb6P0FyNn5+f7dTd1dSsWVObN29WtWrV1LNnT1WvXl2DBw9W69atFR8fr/Lly+drv8nJyXrttdf0wQcf2MaaNm2qZ599VlFRUfriiy/s7poDUHxZTEFfqQgAxdD48eO1cOHCAvsKjwMHDigiIkK//PKL7rzzzgLZJoDCxxEjALDavn27fH19NW3atJvaTseOHVWvXr0CSgXAmThiBAC6/IDIK18ZEhQUdNVTiHl1+PBh2wXgYWFh8vDwKJCMAAofxQgAAMCKU2kAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFb/D60PVy7Nlq5qAAAAAElFTkSuQmCC",
"text/plain": [
"