From 2ba5ede95daa2abfdb2026ec08f29f4e8a818f67 Mon Sep 17 00:00:00 2001 From: Joao P C Bertoldo <24547377+jpcbertoldo@users.noreply.github.com> Date: Sun, 6 Oct 2024 08:43:49 +0200 Subject: [PATCH] Add pimo tutorial advanced i (fixed) (#2336) * uset all padim features to make it deterministic Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com> * add aupimo notebook advanced i Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com> * update readme Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com> * modify changelog Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com> * correct readme Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com> * correct again Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com> * minor corrections Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com> --------- Signed-off-by: jpcbertoldo <24547377+jpcbertoldo@users.noreply.github.com> --- CHANGELOG.md | 2 + notebooks/700_metrics/701a_aupimo.ipynb | 68 +- .../700_metrics/701b_aupimo_advanced_i.ipynb | 1433 +++++++++++++++++ notebooks/700_metrics/pimo_viz.svg | 619 +++++++ notebooks/README.md | 7 + 5 files changed, 2092 insertions(+), 37 deletions(-) create mode 100644 notebooks/700_metrics/701b_aupimo_advanced_i.ipynb create mode 100644 notebooks/700_metrics/pimo_viz.svg diff --git a/CHANGELOG.md b/CHANGELOG.md index fc80fa3e7e..e0e0cc955e 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -120,6 +120,8 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ### Added +- Add `AUPIMO` tutorials notebooks in https://github.com/openvinotoolkit/anomalib/pull/2330 and https://github.com/openvinotoolkit/anomalib/pull/2336 +- Add `AUPIMO` metric by [jpcbertoldo](https://github.com/jpcbertoldo) in https://github.com/openvinotoolkit/anomalib/pull/1726 and refactored by [ashwinvaidya17](https://github.com/ashwinvaidya17) in https://github.com/openvinotoolkit/anomalib/pull/2329 - Add requirements into `pyproject.toml` & Refactor anomalib install `get_requirements` by @harimkang in https://github.com/openvinotoolkit/anomalib/pull/1808 ### Changed diff --git a/notebooks/700_metrics/701a_aupimo.ipynb b/notebooks/700_metrics/701a_aupimo.ipynb index e6333df6df..c6831fd1f7 100644 --- a/notebooks/700_metrics/701a_aupimo.ipynb +++ b/notebooks/700_metrics/701a_aupimo.ipynb @@ -71,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -177,7 +177,7 @@ "model = Padim(\n", " # only use one layer to speed it up\n", " layers=[\"layer1\"],\n", - " n_features=32,\n", + " n_features=64,\n", " backbone=\"resnet18\",\n", " pre_trained=True,\n", ")" @@ -225,7 +225,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "58335955473a43dab43e586caf66aa11", + "model_id": "880e325e4e4842b2b679340ca8007849", "version_major": 2, "version_minor": 0 }, @@ -242,9 +242,9 @@ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
        "┃        Test metric               DataLoader 0        ┃\n",
        "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
-       "│        image_AUROC            0.9735053777694702     │\n",
-       "│       image_F1Score           0.9518716335296631     │\n",
-       "│       pixel_AUPIMO            0.6273086756193275     │\n",
+       "│        image_AUROC            0.9887908697128296     │\n",
+       "│       image_F1Score           0.9726775884628296     │\n",
+       "│       pixel_AUPIMO            0.7428419829089654     │\n",
        "└───────────────────────────┴───────────────────────────┘\n",
        "
\n" ], @@ -252,9 +252,9 @@ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[36m \u001b[0m\u001b[36m image_AUROC \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.9735053777694702 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m image_F1Score \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.9518716335296631 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m pixel_AUPIMO \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6273086756193275 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m image_AUROC \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.9887908697128296 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m image_F1Score \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.9726775884628296 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m pixel_AUPIMO \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.7428419829089654 \u001b[0m\u001b[35m \u001b[0m│\n", "└───────────────────────────┴───────────────────────────┘\n" ] }, @@ -264,9 +264,9 @@ { "data": { "text/plain": [ - "[{'pixel_AUPIMO': 0.6273086756193275,\n", - " 'image_AUROC': 0.9735053777694702,\n", - " 'image_F1Score': 0.9518716335296631}]" + "[{'pixel_AUPIMO': 0.7428419829089654,\n", + " 'image_AUROC': 0.9887908697128296,\n", + " 'image_F1Score': 0.9726775884628296}]" ] }, "execution_count": 8, @@ -314,7 +314,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "678cb90805ee4b7bb1dd0c30944edab9", + "model_id": "e8116b80da39406e966c2099ecb2fdb1", "version_major": 2, "version_minor": 0 }, @@ -390,27 +390,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "tensor([8.7932e-01, 8.4367e-01, 7.9861e-02, 9.2154e-02, 1.5300e-04, 5.8312e-01,\n", - " 8.5351e-01, 3.8730e-01, 1.9997e-02, 1.7658e-01, 8.0739e-01, 7.1827e-01,\n", - " 5.2631e-01, 4.3051e-01, 5.0168e-01, 3.5604e-01, 8.9605e-01, 8.8349e-02,\n", - " 6.0475e-01, 9.6092e-01, 5.8595e-01, 5.7159e-01, 9.8821e-01, 8.8012e-01,\n", - " 5.8205e-01, 9.9295e-01, 1.0000e+00, 9.9967e-01, 5.5366e-01, 8.7399e-01,\n", - " 7.0559e-01, 9.4203e-01, 7.3299e-01, 6.6430e-01, 8.0979e-01, 9.4388e-01,\n", - " 9.9854e-01, 5.8814e-01, 8.8821e-01, 6.3341e-01, 4.2244e-01, 7.3422e-01,\n", - " 4.4623e-01, 5.9982e-01, 1.1232e-01, 2.5705e-01, 3.2403e-01, 5.6662e-02,\n", - " 5.3151e-02, 3.1629e-01, 2.6974e-01, 2.8646e-01, 5.3762e-01, 4.5617e-01,\n", - " 4.4067e-01, 9.8349e-01, 1.2953e-02, 7.9532e-01, 1.7765e-01, 1.1363e-01,\n", - " 9.7337e-01, 4.9871e-01, 2.7917e-01, 4.9118e-01, 2.5533e-02, 0.0000e+00,\n", - " 9.0295e-04, 0.0000e+00, 9.3272e-01, 1.0000e+00, 1.0000e+00, 3.0749e-02,\n", - " 8.0794e-01, 9.4464e-01, nan, nan, nan, nan,\n", - " nan, nan, nan, nan, nan, nan,\n", - " nan, nan, nan, nan, nan, nan,\n", - " nan, nan, nan, nan, nan, nan,\n", - " nan, nan, nan, nan, nan, nan,\n", - " nan, nan, nan, nan, 9.8743e-01, 8.4611e-01,\n", - " 9.7309e-01, 9.8823e-01, 1.0000e+00, 1.0000e+00, 9.6653e-01, 9.6560e-01,\n", - " 1.0000e+00, 1.0000e+00, 9.5783e-01, 1.0000e+00, 9.1427e-01, 9.9806e-01,\n", - " 1.0000e+00, 1.0000e+00, 9.9345e-01, 1.0000e+00], dtype=torch.float64)\n" + "tensor([1.0000, 0.9144, 0.4944, 0.2837, 0.2784, 0.8687, 1.0000, 0.7463, 0.2899,\n", + " 0.8998, 1.0000, 0.9147, 0.6389, 0.9422, 0.9582, 0.9396, 0.9890, 0.5130,\n", + " 0.9698, 0.9237, 0.5732, 0.4620, 0.9995, 0.9078, 0.5873, 1.0000, 1.0000,\n", + " 1.0000, 0.3785, 0.6764, 0.4217, 0.9299, 0.7756, 0.4339, 0.8334, 0.9297,\n", + " 0.9992, 0.5584, 0.9937, 0.7811, 0.4986, 0.7630, 0.5361, 0.7157, 0.1689,\n", + " 0.3086, 0.3604, 0.2423, 0.2880, 0.6404, 0.5570, 0.3274, 0.7749, 0.6740,\n", + " 0.5516, 1.0000, 0.2399, 0.9721, 0.5346, 0.4709, 1.0000, 0.9732, 0.8470,\n", + " 0.8863, 0.0596, 0.0000, 0.5244, 0.0000, 1.0000, 1.0000, 1.0000, 0.0088,\n", + " 0.9706, 1.0000, nan, nan, nan, nan, nan, nan, nan,\n", + " nan, nan, nan, nan, nan, nan, nan, nan, nan,\n", + " nan, nan, nan, nan, nan, nan, nan, nan, nan,\n", + " nan, nan, nan, nan, nan, nan, nan, 0.9895, 0.8531,\n", + " 0.9985, 0.9470, 1.0000, 1.0000, 0.9918, 0.9792, 1.0000, 1.0000, 0.8824,\n", + " 1.0000, 0.9996, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000],\n", + " dtype=torch.float64)\n" ] } ], @@ -439,9 +433,9 @@ "output_type": "stream", "text": [ "MEAN\n", - "aupimo_result.aupimos[~isnan].mean().item()=0.6273086756193275\n", + "aupimo_result.aupimos[~isnan].mean().item()=0.7428419829089654\n", "OTHER STATISTICS\n", - "DescribeResult(nobs=92, minmax=(0.0, 1.0), mean=0.6273086756193275, variance=0.12220088826183258, skewness=-0.506530110649306, kurtosis=-1.1586400848600655)\n" + "DescribeResult(nobs=92, minmax=(0.0, 1.0), mean=0.7428419829089654, variance=0.08757789538421837, skewness=-0.9285672286850366, kurtosis=-0.3299234749959594)\n" ] } ], @@ -469,7 +463,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGjklEQVR4nO3de3zP9f//8fvbzovNaU7ZbEZCyMehlM+Qs1HKB2FF5JRTh69KKvMpKZVPpXLoI3w+bYgQCskpSuSc0yKHiTnbhs3M9vz94b337/Nuw97z3vu9rdv1cnlfeD1fr/fr9Xi/n8Pd6/V8PV8WY4wRAAAAVMzdBQAAABQUBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwCFxtq1a2WxWLR27VpbW58+fRQaGuqS44eGhqpPnz625ZkzZ8pisWjLli0uOX7z5s3VvHlzlxwL+KsiGAEFwKeffiqLxaL77rsvx/VHjhyRxWLRe++9l+P69957TxaLRUeOHLG1NW/eXBaLxfYqXbq0GjVqpM8//1yZmZm27fr06aPixYvb7S/rvdWrV8/xeCtXrrTtd/78+dnW79mzR1FRUbrzzjvl4+OjSpUqqVevXtqzZ8+tvgqX2Lt3r6Kjo+2+r4KiINcG/BV4ursAAFJMTIxCQ0O1efNmHTx4UNWqVXPKfitXrqzx48dLks6cOaP//Oc/6tevn3777Te9/fbbN32vr6+vDh48qM2bN6tx48bZ6vX19dWVK1eyvW/BggXq0aOHSpcurX79+iksLExHjhzR9OnTNX/+fM2ZM0ePPvqoUz6fJH322Wd2QS839u7dq7Fjx6p58+YOnW2Ki4tTsWL5+//Jm9X23Xff5euxAXDGCHC7w4cP66efftLEiRMVFBSkmJgYp+07MDBQUVFRioqK0nPPPacff/xRlStX1scff6z09PSbvjc8PFw1atTQ7Nmz7dqvXLmihQsXKjIyMtt7fv/9dz3xxBOqWrWqdu3apTfffFP9+vXTG2+8oV27dqlq1ap64okndOjQIad9Ri8vL/n4+Dhtf39mjFFqaqokycfHR15eXvl2rFvx9vaWt7e3244P/BUQjAA3i4mJUalSpRQZGal//OMfTg1Gf+bv76/7779fly9f1pkzZ265fY8ePTR37ly7MzJLlixRSkqKunXrlm37d999VykpKZo2bZqCgoLs1pUtW1ZTp07V5cuXNWHChFse+48//lDnzp11xx13qFy5cnruueeUlpaWbbucxhjNmTNHDRo0UIkSJRQQEKA6deroww8/lHR9XFDXrl0lSS1atLBdEswatxQaGqqOHTtqxYoVatiwofz8/DR16lTbuv8dY5QlJSVFAwcOVJkyZRQQEKAnn3xSFy5csNvGYrEoOjo623v/d5+3qi2nMUanT59Wv379VL58efn6+qpevXqaNWuW3Tb/eyl22rRpCg8Pl4+Pjxo1aqRffvklW03AXxmX0gA3i4mJ0WOPPSZvb2/16NFDkydP1i+//KJGjRrly/EOHTokDw8PlSxZ8pbb9uzZU9HR0Vq7dq0eeughSVJsbKxatmypcuXKZdt+yZIlCg0N1d///vcc9xcREaHQ0FB98803Nz1uamqqWrZsqfj4eA0fPlyVKlXSf//7X61evfqWNa9cuVI9evRQy5Yt9c4770iS9u3bpx9//FEjRoxQRESEhg8fro8++kivvPKKatasKUm2X6Xrl8x69OihgQMHqn///qpRo8ZNjzl06FCVLFlS0dHRiouL0+TJk3X06FHbYPHcyk1t/ys1NVXNmzfXwYMHNXToUIWFhWnevHnq06ePEhMTNWLECLvtY2NjdfHiRQ0cOFAWi0UTJkzQY489pkOHDrn1TBhQkBCMADfaunWr9u/fr0mTJkmSmjZtqsqVKysmJsYpwSgjI0Nnz56VJJ09e1aTJ0/Wtm3b1KlTJ/n7+9/y/dWrV1fDhg0VGxurhx56SImJifr222/12WefZds2KSlJJ06c0COPPHLTfdatW1eLFy/WxYsXVaJEiRy3mTZtmn777Td9+eWXtjMo/fv3V7169W5Z8zfffKOAgACtWLFCHh4e2dZXrVpVf//73/XRRx+pdevWOd7ldfDgQS1fvlxt27a95fGk65e4Vq1aZQsXVapU0YsvvqglS5bo4YcfztU+clvb/5o2bZr27dunL774Qr169ZIkDRo0SM2aNdOrr76qvn372n3H8fHxOnDggEqVKiVJqlGjhh555BGtWLFCHTt2zHWdQFHGpTTAjWJiYlS+fHm1aNFC0vXLLd27d9ecOXOUkZFx2/vfv3+/goKCFBQUpJo1a2rSpEmKjIzU559/nut99OzZUwsWLNDVq1c1f/58eXh45Dh4+uLFi5J0w7CTJWt9cnLyDbf59ttvVbFiRf3jH/+wtfn7+2vAgAG3rLdkyZK6fPmyVq5cecttbyQsLCzXoUiSBgwYYHfGZfDgwfL09NS3336b5xpy49tvv1WFChXUo0cPW5uXl5eGDx+uS5cuad26dXbbd+/e3RaKJNnO7DlzzBdQ2BGMADfJyMjQnDlz1KJFCx0+fFgHDx7UwYMHdd999+nUqVNatWqVw/v882Wb0NBQrVy5Ut9//702bNigkydPaunSpSpbtmyu9/n4448rKSlJy5YtU0xMjDp27Jhj+MlqywpIN5KbAHX06FFVq1Yt2+e51SUtSXrmmWd01113qX379qpcubL69u2r5cuX3/J9/yssLMyh7f88rUHx4sVVsWLFfL/l/ujRo6pevXq2O+WyLr0dPXrUrj0kJMRuOSsk/Xk8FPBXxqU0wE1Wr16thIQEzZkzR3PmzMm2PiYmRm3atJF0/dZ5Sba7o/4sJSXFbrssd9xxh1q1anVbdVasWFHNmzfX+++/rx9//FFfffVVjtsFBgaqYsWK2rVr1033t2vXLt15550KCAi4rbpupFy5ctqxY4dWrFihZcuWadmyZZoxY4aefPLJbIOSb8TPzy9fasuJM84M5lZOlxal63feAbiOM0aAm8TExKhcuXKaN29etlePHj20cOFCWxAKCgqSv7+/4uLictxXXFyc/P39HToT5IiePXtq/fr1CggIUIcOHW64XceOHXX48GFt2LAhx/Xr16/XkSNHbjmepUqVKvr999+z/YN9o8//Z97e3urUqZM+/fRT/f777xo4cKD+85//6ODBg5Kyn1m7XQcOHLBbvnTpkhISEuzulitVqpQSExPttrt69aoSEhLs2hyprUqVKjpw4EC2eZz2799vWw/AMQQjwA1SU1O1YMECdezYUf/4xz+yvYYOHaqLFy9q8eLFkq7/T79NmzZasmSJ4uPj7fYVHx+vJUuWqE2bNjc8I3C7/vGPf2jMmDH69NNPbzqPzsiRI+Xn56eBAwfq3LlzduvOnz+vQYMGyd/fXyNHjrzp8Tp06KATJ07YzaqdNQ3Arfz5uMWKFVPdunUlyXa7/x133CFJ2YJKXk2bNs1uXqjJkyfr2rVrat++va0tPDxcP/zwQ7b3/fmMkSO1dejQQSdPntTcuXNtbdeuXdOkSZNUvHhxNWvWLC8fB/hL41Ia4AZZd2Xd6I6l+++/3zbZY/fu3SVJb731lu6//3797W9/04ABAxQaGqojR45o2rRpslgseuutt/Kt3sDAwBzn4Pmz6tWra9asWerVq5fq1KmTbebrs2fPavbs2QoPD7/pfvr376+PP/5YTz75pLZu3aqKFSvqv//9b67upHv66ad1/vx5PfTQQ6pcubKOHj2qSZMm6d5777WNvbn33nvl4eGhd955R0lJSfLx8dFDDz2U4xQEuXH16lW1bNlS3bp1U1xcnD799FM1bdrUrn+ffvppDRo0SF26dFHr1q21c+dOrVixIttZPkdqGzBggKZOnao+ffpo69atCg0N1fz58/Xjjz/qgw8+uOVAeAA5MABcrlOnTsbX19dcvnz5htv06dPHeHl5mbNnz9ra9u3bZ7p3727KlStnPD09Tbly5czjjz9u9u3bl+39zZo1M7Vr175lLb179zZ33HGHw+9ds2aNkWTmzZuXbd2uXbtMjx49TMWKFY2Xl5epUKGC6dGjh/n1119vWU+Wo0ePmocfftj4+/ubsmXLmhEjRpjly5cbSWbNmjV29VepUsW2PH/+fNOmTRtTrlw54+3tbUJCQszAgQNNQkKC3f4/++wzU7VqVePh4WG3zypVqpjIyMgca6pSpYrp3bu3bXnGjBlGklm3bp0ZMGCAKVWqlClevLjp1auXOXfunN17MzIyzEsvvWTKli1r/P39Tdu2bc3Bgwez7fNmtTVr1sw0a9bMbttTp06Zp556ypQtW9Z4e3ubOnXqmBkzZthtc/jwYSPJvPvuu9k+kyQzZsyYHD8v8FdkMYZRdwAAABJjjAAAAGwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYFXkJ3jMzMzUiRMnVKJECac/BgAAAOQPY4wuXryoSpUqZXtQcn4q8sHoxIkTCg4OdncZAAAgD44dO6bKlSu77HhFPhhlTYl/+PBhlS5d2s3V/LWlp6fru+++U5s2beTl5eXucv7S6IuChf4oOOiLguP8+fMKCwtz+aNt3BqMJk+erMmTJ+vIkSOSpNq1a+v1119X+/btdf78eY0ZM0bfffed4uPjFRQUpM6dO+uNN95QYGBgro+RdfmsRIkSCggIyI+PgVxKT0+Xv7+/AgIC+AvHzeiLgoX+KDjoi4Ij68HMrh4G49ZgVLlyZb399tuqXr26jDGaNWuWHnnkEW3fvl3GGJ04cULvvfeeatWqpaNHj2rQoEHZnrgNAADgLG4NRp06dbJbHjdunCZPnqyff/5Z/fr101dffWVbFx4ernHjxikqKkrXrl2Tp2eRvwoIAABcrMCki4yMDM2bN0+XL19WkyZNctwmKSlJAQEBNw1FaWlpSktLsy0nJydLun5KLuu0HNwj6/unH9yPvihY6I+Cg74oONzVBxZjjHHLka1+/fVXNWnSRFeuXFHx4sUVGxurDh06ZNvu7NmzatCggaKiojRu3Lgb7i86Olpjx47N1h4bGyt/f3+n1g4AAPJHSkqKevbsaTsp4ipuD0ZXr15VfHy8kpKSNH/+fP373//WunXrVKtWLds2ycnJat26tUqXLq3FixffdEBcTmeMgoODlZCQoDJlyuTrZ8HNpaena+XKlWrdujWDGt2MvihY6I+Cg74oOM6dO6eKFSu6PBi5/VKat7e3qlWrJklq0KCBfvnlF3344YeaOnWqJOnixYtq166dSpQooYULF97yB9XHx0c+Pj7Z2r28vPghLyDoi4KDvihY6I+Cg75wP3d9/wXukSCZmZm2Mz7Jyclq06aNvL29tXjxYvn6+rq5OgAAUJS59YzRqFGj1L59e4WEhOjixYuKjY3V2rVrtWLFClsoSklJ0RdffKHk5GTbQOqgoCB5eHi4s3QAAFAEuTUYnT59Wk8++aQSEhIUGBiounXrasWKFWrdurXWrl2rTZs2SZLtUluWw4cPKzQ01A0VAwCAosytwWj69Ok3XNe8eXO5eVw4AAD4iylwY4wAAADchWAEAABgRTACAACwIhgBAABYuX2CRwAA4Fzx8fE6e/asu8u4LVlT9LgawQgAgCIkPj5eNe6uqSupKe4u5ba4a1JnghEAAEXI2bNndSU1RWU6viCvMsHuLifPLOcOK2Hphy4/LsEIAIAiyKtMsHwqVLv1hgWUyUy79Ub5gMHXAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArAhGAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArAhGAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArNwajMaPH69GjRqpRIkSKleunDp37qy4uLgctzXGqH379rJYLFq0aJFrCwUAAH8Jbg1G69at05AhQ/Tzzz9r5cqVSk9PV5s2bXT58uVs237wwQeyWCxuqBIAAPxVeOblTenp6Tp58qRSUlIUFBSk0qVL5+ngy5cvt1ueOXOmypUrp61btyoiIsLWvmPHDr3//vvasmWLKlasmKdjAQAA3Equg9HFixf1xRdfaM6cOdq8ebOuXr0qY4wsFosqV66sNm3aaMCAAWrUqFGei0lKSpIku6CVkpKinj176pNPPlGFChVuuY+0tDSlpaXZlpOTkyVdD3Pp6el5rg23L+v7px/cj74oWOiPgqMo9EVmZqb8/Pzk62mRt4dxdzl5lpmnUze3z2KMueW3NnHiRI0bN07h4eHq1KmTGjdurEqVKsnPz0/nz5/X7t27tX79ei1atEj33XefJk2apOrVqztUSGZmph5++GElJiZqw4YNtvaBAwcqIyND//73v68XbLFo4cKF6ty5c477iY6O1tixY7O1x8bGyt/f36GaAACAe2SdGElKSlJAQIDLjpurYNSjRw+9+uqrql279k23S0tL04wZM+Tt7a2+ffs6VMjgwYO1bNkybdiwQZUrV5YkLV68WC+88IK2b9+u4sWLXy/4FsEopzNGwcHBSkhIUJkyZRyqCc6Vnp6ulStXqnXr1vLy8nJ3OX9p9EXBQn8UHEWhL3bu3KmIiAiV7/m2vMtXdXc5eZaZsFcHZ7zk8mCUqxNVs2fPztXOfHx8NGjQIIeLGDp0qJYuXaoffvjBFookafXq1fr9999VsmRJu+27dOmiv//971q7dm2ONfj4+GRr9/LyKrQ/5EUNfVFw0BcFC/1RcBTmvihWrJhSU1N15ZqRySi8Ny2Za+457m1fwUtOTtbq1atVo0YN1axZ06H3GmM0bNgwLVy4UGvXrlVYWJjd+pdffllPP/20XVudOnX0r3/9S506dbrd0gEAAOw4HIy6deumiIgIDR06VKmpqWrYsKGOHDkiY4zmzJmjLl265HpfQ4YMUWxsrL7++muVKFFCJ0+elCQFBgbKz89PFSpUyHHAdUhISLYQBQAAcLscnsfohx9+0N///ndJ0sKFC2WMUWJioj766CO9+eabDu1r8uTJSkpKUvPmzVWxYkXba+7cuY6WBQAAcNscPmOUlJRku51++fLl6tKli/z9/RUZGamRI0c6tK9cjPt2ynsAAAByw+EzRsHBwdq4caMuX76s5cuXq02bNpKkCxcuyNfX1+kFAgAAuIrDZ4yeffZZ9erVS8WLF1dISIiaN28u6foltjp16ji7PgAAAJdxOBg988wzaty4sY4dO6bWrVurWLHrJ52qVq3q8BgjAACAgiRPt+s3bNhQdevW1eHDhxUeHi5PT09FRkY6uzYAAACXcniMUUpKivr16yd/f3/Vrl1b8fHxkqRhw4bp7bffdnqBAAAAruJwMBo1apR27typtWvX2g22btWqFbfZAwCAQs3hS2mLFi3S3Llzdf/998ti+f9TjdeuXVu///67U4sDAABwJYfPGJ05c0blypXL1n758mW7oAQAAFDYOByMGjZsqG+++ca2nBWG/v3vf6tJkybOqwwAAMDFHL6U9tZbb6l9+/bau3evrl27pg8//FB79+7VTz/9pHXr1uVHjQAAAC7h8Bmjpk2baseOHbp27Zrq1Kmj7777TuXKldPGjRvVoEGD/KgRAADAJfI0j1F4eLg+++wzZ9cCAADgVg4Ho+Tk5BzbLRaLfHx85O3tfdtFAQAAuIPDwahkyZI3vfuscuXK6tOnj8aMGWN7XAgAAEBh4HAwmjlzpkaPHq0+ffqocePGkqTNmzdr1qxZevXVV3XmzBm999578vHx0SuvvOL0ggEAAPKLw8Fo1qxZev/999WtWzdbW6dOnVSnTh1NnTpVq1atUkhIiMaNG0cwAgAAhYrD17p++ukn1a9fP1t7/fr1tXHjRknX71zLeoYaAABAYeFwMAoODtb06dOztU+fPl3BwcGSpHPnzqlUqVK3Xx0AAIALOXwp7b333lPXrl21bNkyNWrUSJK0ZcsW7d+/X/Pnz5ck/fLLL+revbtzKwUAAMhnDgejhx9+WHFxcZo6dari4uIkSe3bt9eiRYsUGhoqSRo8eLBTiwQAAHCFPE3wGBoaqvHjxzu7FgAAALfKUzCSpJSUFMXHx+vq1at27XXr1r3togAAANzB4WB05swZPfXUU1q2bFmO6zMyMm67KAAAAHdw+K60Z599VomJidq0aZP8/Py0fPlyzZo1S9WrV9fixYvzo0YAAACXcPiM0erVq/X111+rYcOGKlasmKpUqaLWrVsrICBA48ePV2RkZH7UCQAAkO8cPmN0+fJllStXTpJUqlQpnTlzRpJUp04dbdu2zbnVAQAAuJDDwahGjRq22/Tr1aunqVOn6vjx45oyZYoqVqzo9AIBAABcxeFLaSNGjFBCQoIkacyYMWrXrp1iYmLk7e2tmTNnOrs+AAAAl3E4GEVFRdl+36BBAx09elT79+9XSEiIypYt69TiAAAAXCnP8xhl8ff319/+9jdn1AIAAOBWDgcjY4zmz5+vNWvW6PTp08rMzLRbv2DBAqcVBwAA4EoOB6Nnn31WU6dOVYsWLVS+fHlZLJb8qAsAAMDlHA5G//3vf7VgwQJ16NAhP+oBAABwG4dv1w8MDFTVqlXzoxYAAAC3cjgYRUdHa+zYsUpNTc2PegAAANzG4Utp3bp10+zZs1WuXDmFhobKy8vLbj2zXwMAgMLK4WDUu3dvbd26VVFRUQy+BgAARYrDweibb77RihUr1LRp0/yoBwAAwG0cHmMUHBysgICA/KgFAADArRwORu+//75efPFFHTlyJB/KAQAAcJ88PSstJSVF4eHh8vf3zzb4+vz5804rDgAAwJUcDkYffPBBPpQBAADgfnm6Kw0AAKAoylUwSk5Otg24Tk5Ovum2DMwGAACFVa6CUalSpZSQkKBy5cqpZMmSOc5dZIyRxWJRRkaG04sEAABwhVwFo9WrV6t06dKSpDVr1uRrQQAAAO6Sq2DUrFmzHH8PAABQlDg8jxEAAEBRRTACAACwIhgBAABY5SoYLV68WOnp6fldCwAAgFvlKhg9+uijSkxMlCR5eHjo9OnT+VkTAACAW+QqGAUFBennn3+W9P/nKwIAAChqcnW7/qBBg/TII4/IYrHIYrGoQoUKN9yWCR4BAEBhlatgFB0drccff1wHDx7Uww8/rBkzZqhkyZL5XBoAAIBr5fohsnfffbfuvvtujRkzRl27dpW/v39+1gUAAOByuQ5GWcaMGSNJOnPmjOLi4iRJNWrUUFBQkHMrAwAAcDGH5zFKSUlR3759ValSJUVERCgiIkKVKlVSv379lJKSkh81AgAAuITDwei5557TunXrtHjxYiUmJioxMVFff/211q1bpxdeeCE/agQAAHAJhy+lffXVV5o/f76aN29ua+vQoYP8/PzUrVs3TZ482Zn1AQAAuEyeLqWVL18+W3u5cuW4lAYAAAo1h4NRkyZNNGbMGF25csXWlpqaqrFjx6pJkyZOLQ4AAMCVHL6U9uGHH6pt27aqXLmy6tWrJ0nauXOnfH19tWLFCqcXCAAA4CoOB6N77rlHBw4cUExMjPbv3y9J6tGjh3r16iU/Pz+nFwgAAOAqDgcjSfL391f//v2dXQsAAIBbOTzGCAAAoKgiGAEAAFgRjAAAAKwcCkYZGRn64YcflJiYmE/lAAAAuI9DwcjDw0Nt2rTRhQsX8qseAAAAt3H4Uto999yjQ4cO5UctAAAAbuVwMHrzzTf1f//3f1q6dKkSEhKUnJxs9wIAACisHJ7HqEOHDpKkhx9+WBaLxdZujJHFYlFGRobzqgMAAHAhh4PRmjVr8qMOAAAAt3M4GDVr1iw/6gAAAHC7PM1jtH79ekVFRemBBx7Q8ePHJUn//e9/tWHDBqcWBwAA4EoOB6OvvvpKbdu2lZ+fn7Zt26a0tDRJUlJSkt566y2nFwgAAOAqeborbcqUKfrss8/k5eVla3/wwQe1bds2pxYHAADgSg4Ho7i4OEVERGRrDwwMZEZsAABQqDkcjCpUqKCDBw9ma9+wYYOqVq3qlKIAAADcweFg1L9/f40YMUKbNm2SxWLRiRMnFBMTo//7v//T4MGDHdrXDz/8oE6dOqlSpUqyWCxatGhRtm327dunhx9+WIGBgbrjjjvUqFEjxcfHO1o2AADALTl8u/7LL7+szMxMtWzZUikpKYqIiJCPj4/+7//+T8OGDXNoX5cvX1a9evXUt29fPfbYY9nW//7772ratKn69eunsWPHKiAgQHv27JGvr6+jZQMAANySw8HIYrFo9OjRGjlypA4ePKhLly6pVq1aKl68uMMHb9++vdq3b3/D9aNHj1aHDh00YcIEW1t4eLjDxwEAAMgNh4NRFm9vb5UoUUIlSpTIUyi6lczMTH3zzTd68cUX1bZtW23fvl1hYWEaNWqUOnfufMP3paWl2aYQkGR7flt6errS09OdXidyL+v7px/cj74oWOiPgqMo9EVmZqb8/Pzk62mRt4dxdzl5lpnnhHJ7LMYYh761a9euaezYsfroo4906dIlSVLx4sU1bNgwjRkzxu4WfocKsVi0cOFCW+g5efKkKlasKH9/f7355ptq0aKFli9frldeeUVr1qy54Qzc0dHRGjt2bLb22NhY+fv756k2AADgWikpKerZs6eSkpIUEBDgsuM6nMeGDRumBQsWaMKECWrSpIkkaePGjYqOjta5c+c0efJkpxSWmZkpSXrkkUf03HPPSZLuvfde/fTTT5oyZcoNg9GoUaP0/PPP25aTk5MVHBysFi1aqEyZMk6pDXmTnp6ulStXqnXr1nkO0HAO+qJgoT8KjqLQFzt37lRERITK93xb3uUL793imQnH3HJch4NRbGys5syZYzc2qG7dugoODlaPHj2cFozKli0rT09P1apVy669Zs2aN330iI+Pj3x8fLK1e3l5Fdof8qKGvig46IuChf4oOApzXxQrVkypqam6cs3IZFjcXU6emWvuOa7Dt+v7+PgoNDQ0W3tYWJi8vb2dUZOk62OYGjVqpLi4OLv23377TVWqVHHacQAAALI4fMZo6NCheuONNzRjxgzbmZm0tDSNGzdOQ4cOdWhfly5dspss8vDhw9qxY4dKly6tkJAQjRw5Ut27d1dERIRtjNGSJUu0du1aR8sGAAC4pVwFoz/PMfT999+rcuXKqlevnqTr1zOvXr2qli1bOnTwLVu2qEWLFrblrLFBvXv31syZM/Xoo49qypQpGj9+vIYPH64aNWroq6++UtOmTR06DgAAQG7kKhgFBgbaLXfp0sVuOTg4OE8Hb968uW51U1zfvn3Vt2/fPO0fAADAEbkKRjNmzMjvOgAAANzO4cHXAAAARZXDg6/PnTun119/XWvWrNHp06dt8w1lOX/+vNOKAwAAcCWHg9ETTzyhgwcPql+/fipfvrwslsI7RwIAAMD/cjgYrV+/Xhs2bLDdkQYAAFBUODzG6O6771Zqamp+1AIAAOBWDgejTz/9VKNHj9a6det07tw5JScn270AAAAKK4cvpZUsWVLJycl66KGH7NqNMbJYLMrIyHBacQAAAK7kcDDq1auXvLy8FBsby+BrAABQpDgcjHbv3q3t27erRo0a+VEPAACA2zg8xqhhw4Y6duxYftQCAADgVg6fMRo2bJhGjBihkSNHqk6dOvLy8rJbX7duXacVBwAA4EoOB6Pu3btLkt2DXS0WC4OvAQBAoedwMDp8+HB+1AEAAOB2DgejKlWq5EcdAAAAbudwMPrPf/5z0/VPPvlknosBAABwJ4eD0YgRI+yW09PTlZKSIm9vb/n7+xOMAABAoeXw7foXLlywe126dElxcXFq2rSpZs+enR81AgAAuITDwSgn1atX19tvv53tbBIAAEBh4pRgJEmenp46ceKEs3YHAADgcg6PMVq8eLHdsjFGCQkJ+vjjj/Xggw86rTAAAABXczgYde7c2W7ZYrEoKChIDz30kN5//31n1QUAAOByDgejzMzM/KgDAADA7Zw2xggAAKCwc/iMUUZGhmbOnKlVq1bp9OnT2c4grV692mnFAQAAuFKeJnicOXOmIiMjdc8998hiseRHXQAAAC7ncDCaM2eOvvzyS3Xo0CE/6sk3v/76qwICAtxdxm0pW7asQkJC3F0GAABFlsPByNvbW9WqVcuPWvJV+/btdeXKFXeXcVt8/fwVt38f4QgAgHzicDB64YUX9OGHH+rjjz8uVJfRSrUaKFMmzN1l5Fn6uWM6t/R9nT17lmAEAEA+cTgYbdiwQWvWrNGyZctUu3ZteXl52a1fsGCB04pzJq9SlWSpUPjOdAEAANdxOBiVLFlSjz76aH7UAgAA4FYOB6MZM2bkRx0AAABuxwSPAAAAVrkKRu3atdPPP/98y+0uXryod955R5988sltFwYAAOBqubqU1rVrV3Xp0kWBgYHq1KmTGjZsqEqVKsnX11cXLlzQ3r17tWHDBn377beKjIzUu+++m991AwAAOF2uglG/fv0UFRWlefPmae7cuZo2bZqSkpIkSRaLRbVq1VLbtm31yy+/qGbNmvlaMAAAQH7J9eBrHx8fRUVFKSoqSpKUlJSk1NRUlSlTJtst+wAAAIWRw3elZQkMDFRgYKAzawEAAHAr7koDAACwIhgBAABYEYwAAACsCEYAAABWDgejqlWr6ty5c9naExMTVbVqVacUBQAA4A4OB6MjR44oIyMjW3taWpqOHz/ulKIAAADcIde36y9evNj2+xUrVtjdqp+RkaFVq1YpNDTUqcUBAAC4Uq6DUefOnSVdn+m6d+/eduu8vLwUGhqq999/36nFAQAAuFKug1FmZqYkKSwsTL/88ovKli2bb0UBAAC4g8MzXx8+fDg/6gAAAHC7PD0SZNWqVVq1apVOnz5tO5OU5fPPP3dKYQAAAK7mcDAaO3as/vnPf6phw4aqWLGiLBZLftQFAIDb7Ny5U8WKFc6p/vbt2+fuEgo1h4PRlClTNHPmTD3xxBP5UQ8AAG7zxx9/SJIiIiKUmprq5mrgDg4Ho6tXr+qBBx7Ij1oAAHCrrAmMS7cbpoyASm6uJm9SD21R0vov3F1GoeVwMHr66acVGxur1157LT/qAQDA7bxK3ynPsuHuLiNP0s8dc3cJhZrDwejKlSuaNm2avv/+e9WtW1deXl526ydOnOi04gAAAFzJ4WC0a9cu3XvvvZKk3bt3261jIDYAACjMHA5Ga9asyY86AAAA3K5w3osIAACQDxw+Y9SiRYubXjJbvXr1bRUEAADgLg4Ho6zxRVnS09O1Y8cO7d69O9vDZQEAAAoTh4PRv/71rxzbo6OjdenSpdsuCAAAwF3y9Ky0nERFRalx48Z67733nLVLALil+Ph4nT171t1l3JY/P3MSgPs4LRht3LhRvr6+ztodANxSfHy8atxdU1dSU9xdym3x8/PT7Nmz9ccffygsLMzd5QB/aQ4Ho8cee8xu2RijhIQEbdmyhdmwAbjU2bNndSU1RWU6viCvMsHuLifPPJJPSLr+OAqCEeBeDgejwMBAu+VixYqpRo0a+uc//6k2bdo4rTAAyC2vMsHyqVDN3WXkmcWTyXGBgsLhYDRjxoz8qAMAAMDt8jzGaOvWrdq3b58kqXbt2qpfv77TigIAAHAHh4PR6dOn9fjjj2vt2rUqWbKkJCkxMVEtWrTQnDlzFBQU5OwaAQAAXMLhR4IMGzZMFy9e1J49e3T+/HmdP39eu3fvVnJysoYPH54fNQIAALiEw2eMli9fru+//141a9a0tdWqVUuffPIJg68BAECh5vAZo8zMTHl5eWVr9/LyYpIyAABQqDkcjB566CGNGDFCJ06csLUdP35czz33nFq2bOnU4gAAAFzJ4WD08ccfKzk5WaGhoQoPD1d4eLjCwsKUnJysSZMm5UeNAAAALuHwGKPg4GBt27ZN33//vfbv3y9Jqlmzplq1auX04gAAAFwpT/MYWSwWtW7dWq1bt3Z2PQAAAG6T60tpq1evVq1atZScnJxtXVJSkmrXrq3169c7tTgAAABXynUw+uCDD9S/f38FBARkWxcYGKiBAwdq4sSJTi0OAADAlXIdjHbu3Kl27drdcH2bNm20detWpxQFAADgDrkORqdOncpx/qIsnp6eOnPmjFOKAgAAcIdcB6M777xTu3fvvuH6Xbt2qWLFik4pCgAAwB1yHYw6dOig1157TVeuXMm2LjU1VWPGjFHHjh2dWhwAAIAr5ToYvfrqqzp//rzuuusuTZgwQV9//bW+/vprvfPOO6pRo4bOnz+v0aNHO7W4jIwMvfbaawoLC5Ofn5/Cw8P1xhtvyBjj1OMAAABIDsxjVL58ef30008aPHiwRo0aZQsnFotFbdu21SeffKLy5cs7tbh33nlHkydP1qxZs1S7dm1t2bJFTz31lAIDAzV8+HCnHgsAAMChCR6rVKmib7/9VhcuXNDBgwdljFH16tVVqlSpfCnup59+0iOPPKLIyEhJUmhoqGbPnq3Nmzfny/EAAMBfW55mvi5VqpQaNWrk7FqyeeCBBzRt2jT99ttvuuuuu7Rz505t2LDhpvMlpaWlKS0tzbacNSGlt6dUzKPwXoKzeFrk5+enzMxMpaenu7ucPMmqu7DWX5QUlb7IzMyUn5+ffD0t8i7kf74lFeo/30VFZmamJMnH0yJTSH+mrnl5FIk/F5l5Sii3z2IK8ICdzMxMvfLKK5owYYI8PDyUkZGhcePGadSoUTd8T3R0tMaOHZutPTY2Vv7+/vlZLgAAcJKUlBT17NlTSUlJOU4unV/clMdy58svv1RMTIxiY2NVu3Zt7dixQ88++6wqVaqk3r175/ieUaNG6fnnn7ctJycnKzg4WK+vPKZiFWu5qnSnu3rqkE7FvqwffvhB9erVc3c5eZKenq6VK1eqdevWN50TC/mvqPTFzp07FRERofI935Z3+aruLifPLOcO6532IapYsaLq16/v7nL+0rZv366EhAS9tCxepkyYu8vJk8v71uv88kmF/s9FZsIxtxy3QAejkSNH6uWXX9bjjz8uSapTp46OHj2q8ePH3zAY+fj4yMfHJ1v71WuSJcOSr/Xmp7RrRqmpqSpWrFih/odMkry8vAr9ZygqCntfFCtWTKmpqbpyzcgU4j/flmvXT9wXhT/fhV2xYtdv1k4rxD9TV9IzisSfC3PNPcfN9e367pCSkmL7Ic3i4eFhuwYMAADgTAX6jFGnTp00btw4hYSEqHbt2tq+fbsmTpyovn37urs0AABQBBXoYDRp0iS99tpreuaZZ3T69GlVqlRJAwcO1Ouvv+7u0gAAQBFUoINRiRIl9MEHH+iDDz5wdykAAOAvoECPMQIAAHAlghEAAIAVwQgAAMCqQI8xApC/du7cmW1KjMJk37597i4BQBFDMAL+gv744w9JUkREhFJTU91cDQAUHAQj4C/o3LlzkqTS7YYpI6CSm6vJu9RDW5S0/gt3lwGgCCEYAX9hXqXvlGfZcHeXkWfp59zzLCUARVfhHVwAAADgZAQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgJWnuwsAABQN8fHxOnv2rLvLuC1xcXEqXry4u8uAGxGMAAC3LT4+XjXurqkrqSnuLuW2+Pn5afbs2e4uA25EMAIA3LazZ8/qSmqKynR8QV5lgt1dTp6ZP3a4uwS4GcEIAOA0XmWC5VOhmrvLyLNrySfcXQLcjMHXAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYMY9RIbNv3z53l5BnmZmZkqSdO3eqWLHCncnT0tLk4+Pj7jLyjMceAEDOCEaFRMalC5LFoqioKHeXkmdZU+1HREQoNTXV3eXcHksxyWS6u4o847EHAJAzglEhkZl2STKmUE+3nzXVful2w5QRUMm9xdyG1ENblLT+iyLRFwAAewSjQqYwT7efNdW+V+k75Vk23M3V5F36uWOSikZfAADsFe6BHgAAAE5EMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIoJHgGggIiLiyu0zxEszM9xBP4XwQgA3CzjcqKkKurfv3/hf44gUMgRjADAzTLTLksq3M8RzHqGIFDYEYwAoIAozM8RzHqGIFDYFc6L2QAAAPmAYAQAAGBFMAIAALAiGAEAAFgRjAAAAKwIRgAAAFYEIwAAACuCEQAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArAhGAAAAVgQjAAAAK4IRAACAFcEIAADAimAEAABgRTACAACwIhgBAABYEYwAAACsCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBVKILRJ598otDQUPn6+uq+++7T5s2b3V0SAAAoggp8MJo7d66ef/55jRkzRtu2bVO9evXUtm1bnT592t2lAQCAIqbAB6OJEyeqf//+euqpp1SrVi1NmTJF/v7++vzzz91dGgAAKGIKdDC6evWqtm7dqlatWtnaihUrplatWmnjxo1urAwAABRFnu4u4GbOnj2rjIwMlS9f3q69fPny2r9/f47vSUtLU1pamm05KSlJkmS5EC+Tf6Xmu2IXE+Tr6yvLucMymWm3fkMBVOziSaWkpMhy/qgyr15xdzl5Rl8UHEWhL6Si0R/0RcFRVPrCciFekmSMi//1NgXY8ePHjSTz008/2bWPHDnSNG7cOMf3jBkzxkjixYsXL168eBWB1++//+6KyGFToM8YlS1bVh4eHjp16pRd+6lTp1ShQoUc3zNq1Cg9//zztuXExERVqVJF8fHxCgwMzNd6cXPJyckKDg7WsWPHFBAQ4O5y/tLoi4KF/ig46IuCIykpSSEhISpdurRLj1ugg5G3t7caNGigVatWqXPnzpKkzMxMrVq1SkOHDs3xPT4+PvLx8cnWHhgYyA95AREQEEBfFBD0RcFCfxQc9EXBUayYa4dDF+hgJEnPP/+8evfurYYNG6px48b64IMPdPnyZT311FPuLg0AABQxBT4Yde/eXWfOnNHrr7+ukydP6t5779Xy5cuzDcgGAAC4XQU+GEnS0KFDb3jp7FZ8fHw0ZsyYHC+vwbXoi4KDvihY6I+Cg74oONzVFxZjXH0fHAAAQMFUoCd4BAAAcCWCEQAAgBXBCAAAwIpgBAAAYFUkgtEnn3yi0NBQ+fr66r777tPmzZtt655//nmVLl1awcHBiomJsXvfvHnz1KlTJ1eXWySMHz9ejRo1UokSJVSuXDl17txZcXFxdttcuXJFQ4YMUZkyZVS8eHF16dLFbhbz8+fPq1OnTipevLjq16+v7du3271/yJAhev/9913yeYqSt99+WxaLRc8++6ytjb5wnePHjysqKkplypSRn5+f6tSpoy1bttjWG2P0+uuvq2LFivLz81OrVq104MAB2/q0tDQ98cQTCggI0F133aXvv//ebv/vvvuuhg0b5rLPU1hlZGTotddeU1hYmPz8/BQeHq433njD7rlb9EX++eGHH9SpUydVqlRJFotFixYtslt/q+9euv73Uq9evRQQEKCSJUuqX79+unTpkm39kSNHFBERoTvuuEMRERE6cuSI3fs7duyor776yvHiXfoAknwwZ84c4+3tbT7//HOzZ88e079/f1OyZElz6tQps3jxYlO+fHnzyy+/mNjYWOPr62vOnDljjDEmMTHRVK9e3Rw9etTNn6Bwatu2rZkxY4bZvXu32bFjh+nQoYMJCQkxly5dsm0zaNAgExwcbFatWmW2bNli7r//fvPAAw/Y1j///POmWbNmJi4uzjz77LOmQYMGtnUbN240DRo0MNeuXXPp5yrsNm/ebEJDQ03dunXNiBEjbO30hWucP3/eVKlSxfTp08ds2rTJHDp0yKxYscIcPHjQts3bb79tAgMDzaJFi8zOnTvNww8/bMLCwkxqaqoxxpiPPvrI1KxZ0+zevdu8++67JigoyGRmZhpjjDl06JCpXr26SUpKcsvnK0zGjRtnypQpY5YuXWoOHz5s5s2bZ4oXL24+/PBD2zb0Rf759ttvzejRo82CBQuMJLNw4UK79bf67o0xpl27dqZevXrm559/NuvXrzfVqlUzPXr0sK1/7LHHzOOPP25+++03061bN9OlSxfbujlz5phOnTrlqfZCH4waN25shgwZYlvOyMgwlSpVMuPHjzfvvPOO6d69u21duXLlzObNm40xxgwYMMBMnDjR5fUWVadPnzaSzLp164wx14Onl5eXmTdvnm2bffv2GUlm48aNxhhj2rdvbyZPnmyMMWbv3r3G39/fGGPM1atXTb169cwvv/zi4k9RuF28eNFUr17drFy50jRr1swWjOgL13nppZdM06ZNb7g+MzPTVKhQwbz77ru2tsTEROPj42Nmz55tjDFm8ODB5qWXXjLGGJOSkmIkmdOnTxtjrv+HZMGCBfn4CYqOyMhI07dvX7u2xx57zPTq1csYQ1+40p+DUW6++7179xpJdn/3LFu2zFgsFnP8+HFjjDE1a9Y0y5YtM8ZcD2K1atUyxhhz4cIFU61aNRMfH5+negv1pbSrV69q69atatWqla2tWLFiatWqlTZu3Kh69eppy5YtunDhgrZu3arU1FRVq1ZNGzZs0LZt2zR8+HA3Vl+0JCUlSZLtYX9bt25Venq6Xd/cfffdCgkJ0caNGyVJ9erV0+rVq3Xt2jWtWLFCdevWlSRNmDBBzZs3V8OGDV38KQq3IUOGKDIy0u47l+gLV1q8eLEaNmyorl27qly5cqpfv74+++wz2/rDhw/r5MmTdn0RGBio++67z64vNmzYoNTUVK1YsUIVK1ZU2bJlFRMTI19fXz366KMu/1yF0QMPPKBVq1bpt99+kyTt3LlTGzZsUPv27SXRF+6Um+9+48aNKlmypN3fPa1atVKxYsW0adMmSdf75/vvv1dmZqa+++47299bI0eO1JAhQxQcHJy3AvMUpwqI48ePG0nmp59+smsfOXKkady4sTHGmDFjxpjw8HBzzz33mAULFpi0tDRzzz33mC1btphJkyaZu+66yzzwwANm9+7d7vgIRUJGRoaJjIw0Dz74oK0tJibGeHt7Z9u2UaNG5sUXXzTGXP8fQo8ePUxISIiJiIgwe/bsMb/99pupXr26OXv2rBk4cKAJCwszXbt2NYmJiS77PIXR7NmzzT333GM7Df2/Z4zoC9fx8fExPj4+ZtSoUWbbtm1m6tSpxtfX18ycOdMYY8yPP/5oJJkTJ07Yva9r166mW7duxpjrZ+meeeYZExoaaho2bGjWr19vzp07Z6pWrWri4+PN6NGjTXh4uGnTpo35448/XP4ZC4uMjAzz0ksvGYvFYjw9PY3FYjFvvfWWbT194Tr60xmj3Hz348aNM3fddVe2fQUFBZlPP/3UGGPMH3/8YSIjI01wcLCJjIw0f/zxh1m3bp1p2LChOXfunOnatasJCwszAwcONGlpabmut1A8EuR2REdHKzo62rY8duxYtWrVSl5eXnrzzTf166+/aunSpXryySe1detW9xVaiA0ZMkS7d+/Whg0bHHpfYGCgYmNj7doeeughvfvuu4qJidGhQ4cUFxen/v3765///CeDf2/g2LFjGjFihFauXClfX9887YO+cI7MzEw1bNhQb731liSpfv362r17t6ZMmaLevXvnah9eXl765JNP7NqeeuopDR8+XNu3b9eiRYu0c+dOTZgwQcOHD8/b4NK/gC+//FIxMTGKjY1V7dq1tWPHDj377LOqVKkSfVFE3HnnnVq6dKltOS0tTW3bttWsWbP05ptvqkSJEoqLi1O7du00derUXA+UL9SX0sqWLSsPDw+7u2sk6dSpU6pQoUK27ffv368vvvhCb7zxhtauXauIiAgFBQWpW7du2rZtmy5evOiq0ouMoUOHaunSpVqzZo0qV65sa69QoYKuXr2qxMREu+1v1DeSNGPGDJUsWVKPPPKI1q5dq86dO8vLy0tdu3bV2rVr8/FTFG5bt27V6dOn9be//U2enp7y9PTUunXr9NFHH8nT01Ply5enL1ykYsWKqlWrll1bzZo1FR8fL0m27zu3f2dJ0po1a7Rnzx4NHTpUa9euVYcOHXTHHXeoW7du9MVNjBw5Ui+//LIef/xx1alTR0888YSee+45jR8/XhJ94U65+e4rVKig06dP262/du2azp8/f8P+eeutt9SmTRs1aNBAa9euVZcuXeTl5aXHHnvMof4p1MHI29tbDRo00KpVq2xtmZmZWrVqlZo0aWK3rTFGAwcO1MSJE1W8eHFlZGQoPT1dkmy/ZmRkuK74Qs4Yo6FDh2rhwoVavXq1wsLC7NY3aNBAXl5edn0TFxen+Pj4bH0jSWfOnNE///lPTZo0SZKy9Q99c2MtW7bUr7/+qh07dtheDRs2VK9evWy/py9c48EHH8w2bcVvv/2mKlWqSJLCwsJUoUIFu75ITk7Wpk2bcuyLrGkWpk6dKg8PD/rCASkpKSpWzP6fOA8PD2VmZkqiL9wpN999kyZNlJiYaHclZ/Xq1crMzNR9992XbZ/79u1TbGys3njjDUm3+feWwxcLC5g5c+YYHx8fM3PmTLN3714zYMAAU7JkSXPy5Em77aZNm2Z3K9+mTZtMQECA2bhxo3n99ddto9mRO4MHDzaBgYFm7dq1JiEhwfZKSUmxbTNo0CATEhJiVq9ebbZs2WKaNGlimjRpkuP+evbsaSZNmmRbfuedd0yDBg3M3r17Tfv27c0zzzyT75+pKPnfMUbG0BeusnnzZuPp6WnGjRtnDhw4YGJiYoy/v7/54osvbNu8/fbbpmTJkubrr782u3btMo888ki225SzvPLKK+aFF16wLc+dO9eEhISYnTt3mn79+pkOHTq45HMVRr179zZ33nmn7Xb9BQsWmLJly9rG1RlDX+Snixcvmu3bt5vt27cbSWbixIlm+/bttilycvPdt2vXztSvX99s2rTJbNiwwVSvXt3udv0smZmZpmnTpmbJkiW2tsGDB5vIyEizd+9eU79+fTNhwoRc117og5ExxkyaNMmEhIQYb29v07hxY/Pzzz/brT958qSpUqWK7Ra/LGPHjjWlS5c2d999t9m0aZMrSy70JOX4mjFjhm2b1NRU88wzz5hSpUoZf39/8+ijj5qEhIRs+1q+fLlp3LixycjIsLVdvnzZdO3a1ZQoUcK0bNnSnDp1yhUfq8j4czCiL1xnyZIl5p577jE+Pj7m7rvvNtOmTbNbn5mZaV577TVTvnx54+PjY1q2bGni4uKy7efXX3811apVs5sbLCMjwwwePNgEBASYRo0amQMHDuT75ymskpOTzYgRI0xISIjx9fU1VatWNaNHj7YbhEtf5J81a9bk+G9E7969jTG5++7PnTtnevToYYoXL24CAgLMU089ZS5evJjtWFOmTLE78WGMMadOnTItW7Y0JUqUMF27djWXL1/Ode0WY/5nGlAAAIC/sEI9xggAAMCZCEYAAABWBCMAAAArghEAAIAVwQgAAMCKYAQAAGBFMAIAALAiGAGArj9w2mKxyGKx6IMPPritfTVv3ty2rx07djilPgCuQTACcEsbN26Uh4eHIiMjs61bu3atLBZLtofUSlJoaKhdyMgKCxaLRYGBgXrwwQe1evVq2/o+ffqoc+fOdssWi0WDBg3Ktu8hQ4bIYrGoT58+du3Hjh1T3759ValSJXl7e6tKlSoaMWKEzp07d8vPWbt2bSUkJGjAgAG2tueff16lS5dWcHCwYmJi7LafN2+eOnXqlG0/CxYs0ObNm295PAAFD8EIwC1Nnz5dw4YN0w8//KATJ07c1r5mzJihhIQE/fjjjypbtqw6duyoQ4cO3XD74OBgzZkzR6mpqba2K1euKDY2ViEhIXbbHjp0SA0bNtSBAwc0e/ZsHTx4UFOmTLE9WPr8+fM3rc3T01MVKlSQv7+/JGnJkiWKjY3Vd999pwkTJujpp5/W2bNnJUlJSUkaPXq0Pvnkk2z7KV26tIKCgnL9nQAoOAhGAG7q0qVLmjt3rgYPHqzIyEjNnDnztvZXsmRJVahQQffcc48mT56s1NRUrVy58obb/+1vf1NwcLAWLFhga1uwYIFCQkJUv359u22HDBkib29vfffdd2rWrJlCQkLUvn17ff/99zp+/LhGjx7tUK379u1T8+bN1bBhQ/Xo0UMBAQE6fPiwJOnFF1/U4MGDs4UzAIUbwQjATX355Ze6++67VaNGDUVFRenzzz+Xsx6x6OfnJ0m6evXqTbfr27evZsyYYVv+/PPP9dRTT9ltc/78ea1YsULPPPOMbb9ZKlSooF69emnu3LkO1V6vXj1t2bJFFy5c0NatW5Wamqpq1appw4YN2rZtm4YPH57rfQEoHAhGAG5q+vTpioqKkiS1a9dOSUlJWrdu3W3vNyUlRa+++qo8PDzUrFmzm24bFRWlDRs26OjRozp69Kh+/PFHW01ZDhw4IGOMatasmeM+atasqQsXLujMmTO5rrFt27aKiopSo0aN1KdPH82aNUt33HGHBg8erClTpmjy5MmqUaOGHnzwQe3ZsyfX+wVQcHm6uwAABVdcXJw2b96shQsXSro+Bqd79+6aPn26mjdvnqd99ujRQx4eHkpNTVVQUJCmT5+uunXr3vQ9QUFBtst4xhhFRkaqbNmyOW7rrLNZWaKjoxUdHW1bHjt2rFq1aiUvLy+9+eab+vXXX7V06VI9+eST2rp1q1OPDcD1CEYAbmj69Om6du2aKlWqZGszxsjHx0cff/yxAgMDFRAQIOn6YOSSJUvavT8xMVGBgYF2bf/617/UqlUrBQYGOjRAuW/fvho6dKgk5TjguVq1arJYLNq3b58effTRbOv37dunUqVK3dag6P379+uLL77Q9u3b9fnnnysiIkJBQUHq1q2b+vbtq4sXL6pEiRJ53j8A9+NSGoAcXbt2Tf/5z3/0/vvva8eOHbbXzp07ValSJc2ePVuSVL16dRUrVizb2ZJDhw4pKSlJd911l117hQoVVK1aNYcDSrt27XT16lWlp6erbdu22daXKVNGrVu31qeffmp3B5sknTx5UjExMerevbssFotDx81ijNHAgQM1ceJEFS9eXBkZGUpPT5ck268ZGRl52jeAgoMzRgBytHTpUl24cEH9+vXLdtanS5cumj59ugYNGqQSJUro6aef1gsvvCBPT0/VqVNHx44d00svvaT7779fDzzwgFPq8fDw0L59+2y/z8nHH3+sBx54QG3bttWbb76psLAw7dmzRyNHjtSdd96pcePG5fn4//73vxUUFGSbt+jBBx9UdHS0fv75Zy1btky1atXKdsYMQOHDGSMAOZo+fbrtktefdenSRVu2bNGuXbskSR9++KF69+6tl156SbVr11afPn1Ut25dLVmyJM9naHISEBBgu3SXk+rVq2vLli2qWrWqunXrpvDwcA0YMEAtWrTQxo0bVbp06Twd99SpUxo3bpw++ugjW1vjxo31wgsvKDIyUl9++aXdXXMACi+LcfZIRQAohKKjo7Vo0SKnPcLjyJEjCgsL0/bt23Xvvfc6ZZ8A8h9njADA6tdff1Xx4sX16aef3tZ+2rdvr9q1azupKgCuxBkjAND1CSKzHhkSFBSU4yXE3Dp+/LhtAHhISIi8vb2dUiOA/EcwAgAAsOJSGgAAgBXBCAAAwIpgBAAAYEUwAgAAsCIYAQAAWBGMAAAArAhGAAAAVgQjAAAAK4IRAACA1f8DqBhVg9we8f0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHeUlEQVR4nO3deVyVZeL+8eugrCKgiKAJgktuqZVLWo0raoqW6aiZlFtuqVk21tdpUcuyZbLFXBvDmkDLMkctNXMrjVwwTVNJc8FccAVUEBHu3x8ez29OuHAQzgH8vF8vXuO5n+c8z3W4G7t6tmMxxhgBAABAbq4OAAAAUFRQjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMABQba9askcVi0Zo1a2xj/fr1U3h4uFP2Hx4ern79+tlez5kzRxaLRZs3b3bK/lu1aqVWrVo5ZV/ArYpiBBQB06ZNk8Vi0T333HPV5QcOHJDFYtG//vWvqy7/17/+JYvFogMHDtjGWrVqJYvFYvspX768mjRpoo8//lg5OTm29fr16ydfX1+77V15b82aNa+6vxUrVti2++WXX+Za/ttvvyk6Olq33XabPD09VblyZfXp00e//fbbjX4VTrFz506NHz/e7vdVVBTlbMCtoLSrAwCQYmNjFR4ero0bN2rv3r2qUaNGgWy3SpUqmjRpkiTpxIkT+vTTTzVw4ED9/vvveuONN677Xi8vL+3du1cbN25U06ZNc+X18vLShQsXcr1vwYIF6t27t8qXL6+BAwcqIiJCBw4c0OzZs/Xll19q3rx5evjhhwvk80nSRx99ZFf08mLnzp2aMGGCWrVq5dDRpsTERLm5Fe5/T14v23fffVeo+wbAESPA5fbv36+ffvpJkydPVlBQkGJjYwts2/7+/oqOjlZ0dLSeeeYZrV+/XlWqVNGHH36orKys6763evXqqlWrlubOnWs3fuHCBX399deKiorK9Z4//vhDjz32mKpVq6Zff/1VEydO1MCBA/Xqq6/q119/VbVq1fTYY49p3759BfYZ3d3d5enpWWDb+ytjjDIyMiRJnp6ecnd3L7R93YiHh4c8PDxctn/gVkAxAlwsNjZW5cqVU1RUlP7+978XaDH6Kx8fHzVr1kznz5/XiRMnbrh+79699fnnn9sdkVm8eLHS09PVs2fPXOu//fbbSk9P16xZsxQUFGS3rEKFCpo5c6bOnz+vt95664b7/vPPP9W1a1eVKVNGFStW1DPPPKPMzMxc613tGqN58+apUaNGKlu2rPz8/FS/fn29//77ki5fF9SjRw9JUuvWrW2nBK9ctxQeHq7OnTtr+fLlaty4sby9vTVz5kzbsv+9xuiK9PR0DRkyRIGBgfLz89Pjjz+uM2fO2K1jsVg0fvz4XO/9323eKNvVrjE6fvy4Bg4cqODgYHl5ealhw4b65JNP7Nb531Oxs2bNUvXq1eXp6akmTZpo06ZNuTIBtzJOpQEuFhsbq27dusnDw0O9e/fW9OnTtWnTJjVp0qRQ9rdv3z6VKlVKAQEBN1z30Ucf1fjx47VmzRq1adNGkhQXF6e2bduqYsWKudZfvHixwsPD9be//e2q22vRooXCw8P1zTffXHe/GRkZatu2rZKSkvTUU0+pcuXK+s9//qNVq1bdMPOKFSvUu3dvtW3bVm+++aYkadeuXVq/fr1GjRqlFi1a6KmnntIHH3ygf/7zn6pTp44k2f5XunzKrHfv3hoyZIgGDRqkWrVqXXefI0aMUEBAgMaPH6/ExERNnz5dBw8etF0snld5yfa/MjIy1KpVK+3du1cjRoxQRESE5s+fr379+iklJUWjRo2yWz8uLk5nz57VkCFDZLFY9NZbb6lbt27at2+fS4+EAUUJxQhwoYSEBO3evVtTpkyRJN1///2qUqWKYmNjC6QYZWdn6+TJk5KkkydPavr06dqyZYu6dOkiHx+fG76/Zs2aaty4seLi4tSmTRulpKTo22+/1UcffZRr3dTUVB05ckQPPfTQdbfZoEEDLVq0SGfPnlXZsmWvus6sWbP0+++/64svvrAdQRk0aJAaNmx4w8zffPON/Pz8tHz5cpUqVSrX8mrVqulvf/ubPvjgA7Vr1+6qd3nt3btXy5YtU4cOHW64P+nyKa6VK1faykXVqlX13HPPafHixXrwwQfztI28Zvtfs2bN0q5du/TZZ5+pT58+kqShQ4eqZcuWevHFFzVgwAC733FSUpL27NmjcuXKSZJq1aqlhx56SMuXL1fnzp3znBMoyTiVBrhQbGysgoOD1bp1a0mXT7f06tVL8+bNU3Z29k1vf/fu3QoKClJQUJDq1KmjKVOmKCoqSh9//HGet/Hoo49qwYIFunjxor788kuVKlXqqhdPnz17VpKuWXauuLI8LS3tmut8++23qlSpkv7+97/bxnx8fDR48OAb5g0ICND58+e1YsWKG657LREREXkuRZI0ePBguyMuw4YNU+nSpfXtt9/mO0NefPvttwoJCVHv3r1tY+7u7nrqqad07tw5rV271m79Xr162UqRJNuRvYK85gso7ihGgItkZ2dr3rx5at26tfbv36+9e/dq7969uueee5ScnKyVK1c6vM2/nrYJDw/XihUr9P3332vdunU6duyYlixZogoVKuR5m4888ohSU1O1dOlSxcbGqnPnzlctP1fGrhSka8lLgTp48KBq1KiR6/Pc6JSWJD355JO6/fbb1bFjR1WpUkUDBgzQsmXLbvi+/xUREeHQ+n99rIGvr68qVapU6LfcHzx4UDVr1sx1p9yVU28HDx60Gw8LC7N7faUk/fV6KOBWxqk0wEVWrVqlo0ePat68eZo3b16u5bGxsWrfvr2ky7fOS7LdHfVX6enpdutdUaZMGUVGRt5UzkqVKqlVq1Z65513tH79en311VdXXc/f31+VKlXSr7/+et3t/frrr7rtttvk5+d3U7mupWLFitq6dauWL1+upUuXaunSpYqJidHjjz+e66Lka/H29i6UbFdTEEcG8+pqpxaly3feAbiMI0aAi8TGxqpixYqaP39+rp/evXvr66+/thWhoKAg+fj4KDEx8arbSkxMlI+Pj0NHghzx6KOP6scff5Sfn586dep0zfU6d+6s/fv3a926dVdd/uOPP+rAgQM3vJ6latWq+uOPP3L9C/tan/+vPDw81KVLF02bNk1//PGHhgwZok8//VR79+6VlPvI2s3as2eP3etz587p6NGjdnfLlStXTikpKXbrXbx4UUePHrUbcyRb1apVtWfPnlzPcdq9e7dtOQDHUIwAF8jIyNCCBQvUuXNn/f3vf8/1M2LECJ09e1aLFi2SdPm/9Nu3b6/FixcrKSnJbltJSUlavHix2rdvf80jAjfr73//u8aNG6dp06Zd9zk6Y8aMkbe3t4YMGaJTp07ZLTt9+rSGDh0qHx8fjRkz5rr769Spk44cOWL3VO0rjwG4kb/u183NTQ0aNJAk2+3+ZcqUkaRcRSW/Zs2aZfdcqOnTp+vSpUvq2LGjbax69er64Ycfcr3vr0eMHMnWqVMnHTt2TJ9//rlt7NKlS5oyZYp8fX3VsmXL/Hwc4JbGqTTABa7clXWtO5aaNWtme9hjr169JEmvv/66mjVrprvvvluDBw9WeHi4Dhw4oFmzZslisej1118vtLz+/v5XfQbPX9WsWVOffPKJ+vTpo/r16+d68vXJkyc1d+5cVa9e/brbGTRokD788EM9/vjjSkhIUKVKlfSf//wnT3fSPfHEEzp9+rTatGmjKlWq6ODBg5oyZYruvPNO27U3d955p0qVKqU333xTqamp8vT0VJs2ba76CIK8uHjxotq2bauePXsqMTFR06ZN0/333283v0888YSGDh2q7t27q127dtq2bZuWL1+e6yifI9kGDx6smTNnql+/fkpISFB4eLi+/PJLrV+/Xu+9994NL4QHcBUGgNN16dLFeHl5mfPnz19znX79+hl3d3dz8uRJ29iuXbtMr169TMWKFU3p0qVNxYoVzSOPPGJ27dqV6/0tW7Y09erVu2GWvn37mjJlyjj83tWrVxtJZv78+bmW/frrr6Z3796mUqVKxt3d3YSEhJjevXub7du33zDPFQcPHjQPPvig8fHxMRUqVDCjRo0yy5YtM5LM6tWr7fJXrVrV9vrLL7807du3NxUrVjQeHh4mLCzMDBkyxBw9etRu+x999JGpVq2aKVWqlN02q1ataqKioq6aqWrVqqZv37621zExMUaSWbt2rRk8eLApV66c8fX1NX369DGnTp2ye292drZ5/vnnTYUKFYyPj4/p0KGD2bt3b65tXi9by5YtTcuWLe3WTU5ONv379zcVKlQwHh4epn79+iYmJsZunf379xtJ5u233871mSSZcePGXfXzArciizFcdQcAACBxjREAAIANxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKxK/AMec3JydOTIEZUtW7bAvwYAAAAUDmOMzp49q8qVK+f6ouTCVOKL0ZEjRxQaGurqGAAAIB8OHTqkKlWqOG1/Jb4YXXkk/v79+1W+fHkXp7m1ZWVl6bvvvlP79u3l7u7u6ji3NOaiaGE+ig7moug4ffq0IiIinP7VNiW+GF05fVa2bFn5+fm5OM2tLSsrSz4+PvLz8+MvHBdjLooW5qPoYC6KjitfzOzsy2C4+BoAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVqVdHQAAABSspKQknTx50tUxbkpaWppL9ksxAgCgBElKSlKt2nV0ISPd1VFuipeXl0v2SzECAKAEOXnypC5kpCuw87NyDwx1dZx8s5zar6NL3nf6filGAACUQO6BofIMqeHqGPlmcjJdsl8uvgYAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsKEYAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYFVkitEbb7whi8Wip59+2jZ24cIFDR8+XIGBgfL19VX37t2VnJzsupAAAKBEKxLFaNOmTZo5c6YaNGhgN/7MM89o8eLFmj9/vtauXasjR46oW7duLkoJAABKOpcXo3PnzqlPnz766KOPVK5cOdt4amqqZs+ercmTJ6tNmzZq1KiRYmJi9NNPP+nnn392YWIAAFBSlXZ1gOHDhysqKkqRkZGaOHGibTwhIUFZWVmKjIy0jdWuXVthYWGKj49Xs2bNrrq9zMxMZWZm2l6npaVJkrKyspSVlVVInwJ5ceX3zzy4HnNRtDAfRUdJmIucnBx5e3vLq7RFHqWMq+PkW46LGopLi9G8efO0ZcsWbdq0KdeyY8eOycPDQwEBAXbjwcHBOnbs2DW3OWnSJE2YMCHX+OrVq+Xj43PTmXHzVqxY4eoIsGIuihbmo+go7nMxd+5c65+yXZrjZqSnh+rRGOfv12XF6NChQxo1apRWrFghLy+vAtvu2LFjNXr0aNvrtLQ0hYaGqnXr1goMDCyw/cBxWVlZWrFihdq1ayd3d3dXx7mlMRdFC/NRdJSEudi2bZtatGih4EffkEdwNVfHybeco4dcsl+XFaOEhAQdP35cd999t20sOztbP/zwgz788EMtX75cFy9eVEpKit1Ro+TkZIWEhFxzu56envL09Mw17u7uXmz/IS9pmIuig7koWpiPoqM4z4Wbm5syMjJ04ZKRyba4Ok6+mUuu2a/LilHbtm21fft2u7H+/furdu3aev755xUaGip3d3etXLlS3bt3lyQlJiYqKSlJzZs3d0VkAABQwrmsGJUtW1Z33HGH3ViZMmUUGBhoGx84cKBGjx6t8uXLy8/PTyNHjlTz5s2veeE1AADAzXD5XWnX8+6778rNzU3du3dXZmamOnTooGnTprk6FgAAKKGKVDFas2aN3WsvLy9NnTpVU6dOdU0gAABwS3H5Ax4BAACKCooRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsKEYAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsSufnTVlZWTp27JjS09MVFBSk8uXLF3QuAAAAp8vzEaOzZ89q+vTpatmypfz8/BQeHq46deooKChIVatW1aBBg7Rp06bCzAoAAFCo8lSMJk+erPDwcMXExCgyMlILFy7U1q1b9fvvvys+Pl7jxo3TpUuX1L59ez3wwAPas2dPYecGAAAocHk6lbZp0yb98MMPqlev3lWXN23aVAMGDNCMGTMUExOjH3/8UTVr1izQoAAAAIUtT8Vo7ty5edqYp6enhg4delOBAAAAXOWm70pLS0vTwoULtWvXroLIAwAA4DIOF6OePXvqww8/lCRlZGSocePG6tmzpxo0aKCvvvqqwAMCAAA4i8PF6IcfftDf/vY3SdLXX38tY4xSUlL0wQcfaOLEiQUeEAAAwFkcLkapqam25xYtW7ZM3bt3l4+Pj6KiorgbDQAAFGsOF6PQ0FDFx8fr/PnzWrZsmdq3by9JOnPmjLy8vAo8IAAAgLM4/OTrp59+Wn369JGvr6/CwsLUqlUrSZdPsdWvX7+g8wEAADiNw8XoySefVNOmTXXo0CG1a9dObm6XDzpVq1aNa4wAAECxlq/vSmvcuLEaNGig/fv3q3r16ipdurSioqIKOhsAAIBTOXyNUXp6ugYOHCgfHx/Vq1dPSUlJkqSRI0fqjTfeKPCAAAAAzuJwMRo7dqy2bdumNWvW2F1sHRkZqc8//7xAwwEAADiTw6fSFi5cqM8//1zNmjWTxWKxjderV09//PFHgYYDAABwJoePGJ04cUIVK1bMNX7+/Hm7ogQAAFDcOFyMGjdurG+++cb2+koZ+ve//63mzZsXXDIAAAAnc/hU2uuvv66OHTtq586dunTpkt5//33t3LlTP/30k9auXVsYGQEAAJzC4SNG999/v7Zu3apLly6pfv36+u6771SxYkXFx8erUaNGhZERAADAKfL1HKPq1avro48+KugsAAAALuVwMUpLS7vquMVikaenpzw8PG46FAAAgCs4XIwCAgKue/dZlSpV1K9fP40bN872dSEAAADFgcPFaM6cOXrhhRfUr18/NW3aVJK0ceNGffLJJ3rxxRd14sQJ/etf/5Knp6f++c9/FnhgAACAwuJwMfrkk0/0zjvvqGfPnraxLl26qH79+po5c6ZWrlypsLAwvfbaaxQjAABQrDh8ruunn37SXXfdlWv8rrvuUnx8vKTLd65d+Q41AACA4sLhYhQaGqrZs2fnGp89e7ZCQ0MlSadOnVK5cuVuPh0AAIATOXwq7V//+pd69OihpUuXqkmTJpKkzZs3a/fu3fryyy8lSZs2bVKvXr0KNikAAEAhc7gYPfjgg0pMTNTMmTOVmJgoSerYsaMWLlyo8PBwSdKwYcMKNCQAAIAz5OsBj+Hh4Zo0aVJBZwEAAHCpfBUjSUpPT1dSUpIuXrxoN96gQYObDgUAAOAKDhejEydOqH///lq6dOlVl2dnZ990KAAAAFdw+K60p59+WikpKdqwYYO8vb21bNkyffLJJ6pZs6YWLVpUGBkBAACcwuEjRqtWrdJ///tfNW7cWG5ubqpataratWsnPz8/TZo0SVFRUYWREwAAoNA5fMTo/PnzqlixoiSpXLlyOnHihCSpfv362rJlS8GmAwAAcCKHi1GtWrVst+k3bNhQM2fO1OHDhzVjxgxVqlSpwAMCAAA4i8PFaNSoUTp69Kgkady4cVq6dKnCwsL0wQcf6PXXX3doW9OnT1eDBg3k5+cnPz8/NW/e3O6i7gsXLmj48OEKDAyUr6+vunfvruTkZEcjAwAA5InD1xhFR0fb/tyoUSMdPHhQu3fvVlhYmCpUqODQtqpUqaI33nhDNWvWlDFGn3zyiR566CH98ssvqlevnp555hl98803mj9/vvz9/TVixAh169ZN69evdzQ2AADADeX7OUZX+Pj46O67787Xe7t06WL3+rXXXtP06dP1888/q0qVKpo9e7bi4uLUpk0bSVJMTIzq1Kmjn3/+Wc2aNbvZ6AAAAHYcLkbGGH355ZdavXq1jh8/rpycHLvlCxYsyFeQ7OxszZ8/X+fPn1fz5s2VkJCgrKwsRUZG2tapXbu2wsLCFB8ff81ilJmZqczMTNvrtLQ0SVJWVpaysrLylQ0F48rvn3lwPeaiaGE+io6SMBc5OTny9vaWV2mLPEoZV8fJt5ybPnSTPw7v9umnn9bMmTPVunVrBQcHy2Kx3FSA7du3q3nz5rpw4YJ8fX319ddfq27dutq6das8PDwUEBBgt35wcLCOHTt2ze1NmjRJEyZMyDW+evVq+fj43FRWFIwVK1a4OgKsmIuihfkoOor7XMydO9f6p+L70OX09FA9GuP8/TpcjP7zn/9owYIF6tSpU4EEqFWrlrZu3arU1FR9+eWX6tu3r9auXZvv7Y0dO1ajR4+2vU5LS1NoaKhat26twMDAgoiMfMrKytKKFSvUrl07ubu7uzrOLY25KFqYj6KjJMzFtm3b1KJFCwU/+oY8gqu5Ok6+5Rw95JL9OlyM/P39Va1awf2iPTw8VKNGDUmXL+betGmT3n//ffXq1UsXL15USkqK3VGj5ORkhYSEXHN7np6e8vT0zDXu7u5ebP8hL2mYi6KDuShamI+iozjPhZubmzIyMnThkpHJvrmzOq5kLrlmvw7frj9+/HhNmDBBGRkZhZFHOTk5yszMVKNGjeTu7q6VK1faliUmJiopKUnNmzcvlH0DAIBbm8NHjHr27Km5c+eqYsWKCg8Pz9WoHXn69dixY9WxY0eFhYXp7NmziouL05o1a7R8+XL5+/tr4MCBGj16tMqXLy8/Pz+NHDlSzZs35440AABQKBwuRn379lVCQoKio6Nv+uLr48eP6/HHH9fRo0fl7++vBg0aaPny5WrXrp0k6d1335Wbm5u6d++uzMxMdejQQdOmTcv3/gAAAK7H4WL0zTffaPny5br//vtveuezZ8++7nIvLy9NnTpVU6dOvel9AQAA3IjD1xiFhobKz8+vMLIAAAC4lMPF6J133tFzzz2nAwcOFEIcAAAA18nXd6Wlp6erevXq8vHxyXXx9enTpwssHAAAgDM5XIzee++9QogBAADgevm6Kw0AAKAkylMxSktLs11wfeVLWa+FC7MBAEBxladiVK5cOR09elQVK1ZUQEDAVZ9dZIyRxWJRdnbx/cI6AABwa8tTMVq1apXKly8v6fK31AMAAJREeSpGLVu2vOqfAQAAShKHn2MEAABQUlGMAAAArChGAAAAVnkqRosWLVJWVlZhZwEAAHCpPBWjhx9+WCkpKZKkUqVK6fjx44WZCQAAwCXyVIyCgoL0888/S/r/zysCAAAoafJ0u/7QoUP10EMPyWKxyGKxKCQk5Jrr8oBHAABQXOWpGI0fP16PPPKI9u7dqwcffFAxMTEKCAgo5GgAAADOlecvka1du7Zq166tcePGqUePHvLx8SnMXAAAAE6X52J0xbhx4yRJJ06cUGJioiSpVq1aCgoKKthkAAAATubwc4zS09M1YMAAVa5cWS1atFCLFi1UuXJlDRw4UOnp6YWREQAAwCkcLkbPPPOM1q5dq0WLFiklJUUpKSn673//q7Vr1+rZZ58tjIwAAABO4fCptK+++kpffvmlWrVqZRvr1KmTvL291bNnT02fPr0g8wEAADhNvk6lBQcH5xqvWLEip9IAAECx5nAxat68ucaNG6cLFy7YxjIyMjRhwgQ1b968QMMBAAA4k8On0t5//3116NBBVapUUcOGDSVJ27Ztk5eXl5YvX17gAQEAAJzF4WJ0xx13aM+ePYqNjdXu3bslSb1791afPn3k7e1d4AEBAACcxeFiJEk+Pj4aNGhQQWcBAABwKYevMQIAACipKEYAAABWFCMAAAArh4pRdna2fvjhB6WkpBRSHAAAANdxqBiVKlVK7du315kzZworDwAAgMs4fCrtjjvu0L59+wojCwAAgEs5XIwmTpyof/zjH1qyZImOHj2qtLQ0ux8AAIDiyuHnGHXq1EmS9OCDD8pisdjGjTGyWCzKzs4uuHQAAABO5HAxWr16dWHkAAAAcDmHi1HLli0LIwcAAIDL5es5Rj/++KOio6N177336vDhw5Kk//znP1q3bl2BhgMAAHAmh4vRV199pQ4dOsjb21tbtmxRZmamJCk1NVWvv/56gQcEAABwlnzdlTZjxgx99NFHcnd3t43fd9992rJlS4GGAwAAcCaHi1FiYqJatGiRa9zf358nYgMAgGLN4WIUEhKivXv35hpft26dqlWrViChAAAAXMHhYjRo0CCNGjVKGzZskMVi0ZEjRxQbG6t//OMfGjZsWGFkBAAAcAqHb9f/v//7P+Xk5Kht27ZKT09XixYt5OnpqX/84x8aOXJkYWQEAABwCoeLkcVi0QsvvKAxY8Zo7969OnfunOrWrStfX9/CyAcAAOA0DhejKzw8PFS2bFmVLVuWUgQAAEoEh68xunTpkl566SX5+/srPDxc4eHh8vf314svvqisrKzCyAgAAOAUDh8xGjlypBYsWKC33npLzZs3lyTFx8dr/PjxOnXqlKZPn17gIQEAAJzB4WIUFxenefPmqWPHjraxBg0aKDQ0VL1796YYAQCAYsvhU2menp4KDw/PNR4RESEPD4+CyAQAAOASDhejESNG6NVXX7V9R5okZWZm6rXXXtOIESMKNBwAAIAz5elUWrdu3exef//996pSpYoaNmwoSdq2bZsuXryotm3bFnxCAAAAJ8lTMfL397d73b17d7vXoaGhBZcIAADARfJUjGJiYgo7BwAAgMs5fI0RAABASeXw7fqnTp3Syy+/rNWrV+v48ePKycmxW3769OkCCwcAAOBMDhejxx57THv37tXAgQMVHBwsi8VSGLkAAACczuFi9OOPP2rdunW2O9IAAABKCoevMapdu7YyMjIKIwsAAIBLOVyMpk2bphdeeEFr167VqVOnlJaWZvcDAABQXDl8Ki0gIEBpaWlq06aN3bgxRhaLRdnZ2QUWDgAAwJkcLkZ9+vSRu7u74uLiuPgaAACUKA4Xox07duiXX35RrVq1CiMPAACAyzh8jVHjxo116NChwsgCAADgUg4fMRo5cqRGjRqlMWPGqH79+nJ3d7db3qBBgwILBwAA4EwOF6NevXpJkgYMGGAbs1gsXHwNAACKPYeL0f79+wsjBwAAgMs5fI1R1apVr/vjiEmTJqlJkyYqW7asKlasqK5duyoxMdFunQsXLmj48OEKDAyUr6+vunfvruTkZEdjAwAA3JDDR4w+/fTT6y5//PHH87yttWvXavjw4WrSpIkuXbqkf/7zn2rfvr127typMmXKSJKeeeYZffPNN5o/f778/f01YsQIdevWTevXr3c0OgAAwHU5XIxGjRpl9zorK0vp6eny8PCQj4+PQ8Vo2bJldq/nzJmjihUrKiEhQS1atFBqaqpmz56tuLg42wMlY2JiVKdOHf38889q1qyZo/EBAACuyeFidObMmVxje/bs0bBhwzRmzJibCpOamipJKl++vCQpISFBWVlZioyMtK1Tu3ZthYWFKT4+/qrFKDMzU5mZmbbXV76mJCsrS1lZWTeVDzfnyu+feXA95qJoYT6KjpIwFzk5OfL29pZXaYs8ShlXx8m3HIcbSsGwGGMK5Le2efNmRUdHa/fu3fl6f05Ojh588EGlpKRo3bp1kqS4uDj179/fruhIUtOmTdW6dWu9+eabubYzfvx4TZgwIdd4XFycfHx88pUNAAA4V3p6uh599FGlpqbKz8/PafstsD5WunRpHTlyJN/vHz58uHbs2GErRfk1duxYjR492vY6LS1NoaGhat26tQIDA29q27g5WVlZWrFihdq1a5fr+VdwLuaiaGE+io6SMBfbtm1TixYtFPzoG/IIrubqOPmWc9Q1D5N2uBgtWrTI7rUxRkePHtWHH36o++67L18hRowYoSVLluiHH35QlSpVbOMhISG6ePGiUlJSFBAQYBtPTk5WSEjIVbfl6ekpT0/PXOPu7u7F9h/ykoa5KDqYi6KF+Sg6ivNcuLm5KSMjQxcuGZns4vt9puaSa/brcDHq2rWr3WuLxaKgoCC1adNG77zzjkPbMsZo5MiR+vrrr7VmzRpFRETYLW/UqJHc3d21cuVKde/eXZKUmJiopKQkNW/e3NHoAAAA1+VwMcrJySmwnQ8fPlxxcXH673//q7Jly+rYsWOSJH9/f3l7e8vf318DBw7U6NGjVb58efn5+WnkyJFq3rw5d6QBAIAC56Jrvi+bPn26JKlVq1Z24zExMerXr58k6d1335Wbm5u6d++uzMxMdejQQdOmTXNyUgAAcCtwuBhlZ2drzpw5WrlypY4fP57rCNKqVavyvK283BDn5eWlqVOnaurUqY5GBQAAcEi+HvA4Z84cRUVF6Y477pDFUnwv7AIAAPhfDhejefPm6YsvvlCnTp0KIw8AAIDLOPwlsh4eHqpRo0ZhZAEAAHAph4vRs88+q/fffz9P1wcBAAAUJw6fSlu3bp1Wr16tpUuXql69erkegLVgwYICCwcAAOBMDhejgIAAPfzww4WRBQAAwKUcLkYxMTGFkQMAAMDlHL7GCAAAoKTKUzF64IEH9PPPP99wvbNnz+rNN9/kYYwAAKBYytOptB49eqh79+7y9/dXly5d1LhxY1WuXFleXl46c+aMdu7cqXXr1unbb79VVFSU3n777cLODQAAUODyVIwGDhyo6OhozZ8/X59//rlmzZql1NRUSZLFYlHdunXVoUMHbdq0SXXq1CnUwAAAAIUlzxdfe3p6Kjo6WtHR0ZKk1NRUZWRkKDAwMNct+wAAAMWRw3elXeHv7y9/f/+CzAIAAOBS3JUGAABgRTECAACwohgBAABYUYwAAACsHC5G1apV06lTp3KNp6SkqFq1agUSCgAAwBUcLkYHDhxQdnZ2rvHMzEwdPny4QEIBAAC4Qp5v11+0aJHtz8uXL7e7VT87O1srV65UeHh4gYYDAABwpjwXo65du0q6/KTrvn372i1zd3dXeHi43nnnnQINBwAA4Ex5LkY5OTmSpIiICG3atEkVKlQotFAAAACu4PCTr/fv318YOQAAAFwuX18JsnLlSq1cuVLHjx+3HUm64uOPPy6QYAAAAM7mcDGaMGGCXnnlFTVu3FiVKlWSxWIpjFwAAABO53AxmjFjhubMmaPHHnusMPIAAAC4jMPPMbp48aLuvffewsgCAADgUg4XoyeeeEJxcXGFkQUAAMClHD6VduHCBc2aNUvff/+9GjRoIHd3d7vlkydPLrBwAAAAzuRwMfr111915513SpJ27Nhht4wLsQEAQHHmcDFavXp1YeQAAABwOYevMQIAACipHD5i1Lp16+ueMlu1atVNBQIAAHAVh4vRleuLrsjKytLWrVu1Y8eOXF8uCwAAUJw4XIzefffdq46PHz9e586du+lAAAAArlJg1xhFR0fzPWkAAKBYK7BiFB8fLy8vr4LaHAAAgNM5fCqtW7dudq+NMTp69Kg2b96sl156qcCCAQAAOJvDxcjf39/utZubm2rVqqVXXnlF7du3L7BgAAAAzuZwMYqJiSmMHAAAAC7ncDG6IiEhQbt27ZIk1atXT3fddVeBhQIAAHAFh4vR8ePH9cgjj2jNmjUKCAiQJKWkpKh169aaN2+egoKCCjojAACAUzh8V9rIkSN19uxZ/fbbbzp9+rROnz6tHTt2KC0tTU899VRhZAQAAHAKh48YLVu2TN9//73q1KljG6tbt66mTp3KxdcAAKBYc/iIUU5Ojtzd3XONu7u7Kycnp0BCAQAAuILDxahNmzYaNWqUjhw5Yhs7fPiwnnnmGbVt27ZAwwEAADiTw8Xoww8/VFpamsLDw1W9enVVr15dERERSktL05QpUwojIwAAgFM4fI1RaGiotmzZou+//167d++WJNWpU0eRkZEFHg4AAMCZ8vUcI4vFonbt2qldu3YFnQcAAMBl8nwqbdWqVapbt67S0tJyLUtNTVW9evX0448/Fmg4AAAAZ8pzMXrvvfc0aNAg+fn55Vrm7++vIUOGaPLkyQUaDgAAwJnyXIy2bdumBx544JrL27dvr4SEhAIJBQAA4Ap5LkbJyclXfX7RFaVLl9aJEycKJBQAAIAr5LkY3XbbbdqxY8c1l//666+qVKlSgYQCAABwhTwXo06dOumll17ShQsXci3LyMjQuHHj1Llz5wINBwAA4Ex5vl3/xRdf1IIFC3T77bdrxIgRqlWrliRp9+7dmjp1qrKzs/XCCy8UWlAAAIDCludiFBwcrJ9++knDhg3T2LFjZYyRdPmZRh06dNDUqVMVHBxcaEEBAAAKm0MPeKxataq+/fZbnTlzRnv37pUxRjVr1lS5cuUKKx8AAIDT5OvJ1+XKlVOTJk0KOgsAAIBLOfwlsgAAACUVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuXFqMffvhBXbp0UeXKlWWxWLRw4UK75cYYvfzyy6pUqZK8vb0VGRmpPXv2uCYsAAAo8VxajM6fP6+GDRtq6tSpV13+1ltv6YMPPtCMGTO0YcMGlSlTRh06dNCFCxecnBQAANwK8vWVIAWlY8eO6tix41WXGWP03nvv6cUXX9RDDz0kSfr0008VHByshQsX6pFHHnFmVAAAcAsostcY7d+/X8eOHVNkZKRtzN/fX/fcc4/i4+NdmAwAAJRULj1idD3Hjh2TJAUHB9uNBwcH25ZdTWZmpjIzM22v09LSJElZWVnKysoqhKTIqyu/f+bB9ZiLooX5KDpKwlzk5OTI29tbXqUt8ihlXB0n33Jc1FCKbDHKr0mTJmnChAm5xlevXi0fHx8XJMJfrVixwtURYMVcFC3MR9FR3Odi7ty51j9luzTHzUhPD9WjMc7fb5EtRiEhIZKk5ORkVapUyTaenJysO++885rvGzt2rEaPHm17nZaWptDQULVu3VqBgYGFlhc3lpWVpRUrVqhdu3Zyd3d3dZxbGnNRtDAfRUdJmItt27apRYsWCn70DXkEV3N1nHzLOXrIJfstssUoIiJCISEhWrlypa0IpaWlacOGDRo2bNg13+fp6SlPT89c4+7u7sX2H/KShrkoOpiLooX5KDqK81y4ubkpIyNDFy4ZmWyLq+Pkm7nkmv26tBidO3dOe/futb3ev3+/tm7dqvLlyyssLExPP/20Jk6cqJo1ayoiIkIvvfSSKleurK5du7ouNAAAKLFcWow2b96s1q1b215fOQXWt29fzZkzR88995zOnz+vwYMHKyUlRffff7+WLVsmLy8vV0UGAAAlmEuLUatWrWTMta+Yt1gseuWVV/TKK684MRUAALhVFdlrjAAgL5KSknTy5ElXx7gpOTk5ro4AwIpiBKDYSkpKUq3adXQhI93VUW6Kt7e35s6dqz///FMRERGujgPc0ihGAIqtkydP6kJGugI7Pyv3wFBXx8m3UmlHJEmnTp2iGAEuRjECUOy5B4bKM6SGq2Pkm6V08b2lGihpiux3pQEAADgbxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsOJLZAEA+Itt27bJza14HjvYtWuXqyMUaxQjAACs/vzzT0lSixYtlJGR4eI0cAWKEQAAVqdOnZIklX9gpLL9Krs4Tf5k7Nus1B8/c3WMYotiBADAX7iXv02lK1R3dYx8yTp1yNURirXieQIVAACgEFCMAAAArChGAAAAVhQjAAAAKy6+htMV5+eDXFGhQgWFhYW5OsZNK+5zwfNaipakpCSdPHnS1TFuSmJionx9fV0dAy5EMYLTlKTng3h5+yhx965iW45K0lygaEhKSlKt2nV0ISPd1VFuire3t+bOnevqGHAhihGcpiQ8H0S6fCvsqSXv6OTJk8W2GJWUueB5LUXHyZMndSEjXYGdn5V7YKir4+Sb+XOrqyPAxShGcLri/HyQkqa4zwXPayl63AND5RlSw9Ux8u1S2hFXR4CLFd+LCwAAAAoYxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYHXLfFfa9u3b5efn5+oYN6VChQrF9ktLS6Jdu3a5OkK+JSYmytfX19Ux8BeJiYlycyue/71anP//APyvW6YYdezYURcuXHB1jJvi5e2jxN27KEculn3ujGSxKDo62tVR8s3b21tz5851dQxYZZ9PkVRVgwYNUkZGhqvjALe0W6YYlYscIhMY4eoY+ZZ16pBOLXlHJ0+epBi5WE7mOckYBXZ+Vu6Boa6Oky/mz62ujoD/kZN5XpJU/oGRyvar7OI0+ZOxb7NSf/zM1TGAm3bLFCP3cpVlCanh6hgoQdwDQ+VZTP+ZupR2xNURcBXu5W9T6QrVXR0jX7JOHXJ1BKBAFM+T2QAAAIWAYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYlXZ1ADhm165dro6Qb4mJifL19XV1DAAAroliVExknzsjWSyKjo52dZR88/b21ty5c10dAwCAa6IYFRM5meckYxTY+Vm5B4a6Ok6+mD+3ujoCAADXRTEqZtwDQ+UZUsPVMfLlUtoRV0cAAOC6isXF11OnTlV4eLi8vLx0zz33aOPGja6OBAAASqAiX4w+//xzjR49WuPGjdOWLVvUsGFDdejQQcePH3d1NAAAUMIU+WI0efJkDRo0SP3791fdunU1Y8YM+fj46OOPP3Z1NAAAUMIU6WJ08eJFJSQkKDIy0jbm5uamyMhIxcfHuzAZAAAoiYr0xdcnT55Udna2goOD7caDg4O1e/fuq74nMzNTmZmZttepqamSJMuZJJnCi1ro3M4elZeXlyyn9svkZN74DUWQ29ljSk9Pl+X0QeVcvODqOPnGXBQdJWEupJIxH8xF0VFS5sJyJkmSZIyT/+1tirDDhw8bSeann36yGx8zZoxp2rTpVd8zbtw4I4kffvjhhx9++CkBP3/88YczKodNkT5iVKFCBZUqVUrJycl248nJyQoJCbnqe8aOHavRo0fbXqekpKhq1apKSkqSv79/oebF9aWlpSk0NFSHDh2Sn5+fq+Pc0piLooX5KDqYi6IjNTVVYWFhKl++vFP3W6SLkYeHhxo1aqSVK1eqa9eukqScnBytXLlSI0aMuOp7PD095enpmWvc39+ff8iLCD8/P+aiiGAuihbmo+hgLooONzfnXg5dpIuRJI0ePVp9+/ZV48aN1bRpU7333ns6f/68+vfv7+poAACghCnyxahXr146ceKEXn75ZR07dkx33nmnli1bluuCbAAAgJtV5IuRJI0YMeKap85uxNPTU+PGjbvq6TU4F3NRdDAXRQvzUXQwF0WHq+bCYoyz74MDAAAomor0Ax4BAACciWIEAABgRTECAACwohgBAABYlYhiNHXqVIWHh8vLy0v33HOPNm7caFs2evRolS9fXqGhoYqNjbV73/z589WlSxdnxy0RJk2apCZNmqhs2bKqWLGiunbtqsTERLt1Lly4oOHDhyswMFC+vr7q3r273VPMT58+rS5dusjX11d33XWXfvnlF7v3Dx8+XO+8845TPk9J8sYbb8hisejpp5+2jTEXznP48GFFR0crMDBQ3t7eql+/vjZv3mxbbozRyy+/rEqVKsnb21uRkZHas2ePbXlmZqYee+wx+fn56fbbb9f3339vt/23335bI0eOdNrnKa6ys7P10ksvKSIiQt7e3qpevbpeffVVu+/dYi4Kzw8//KAuXbqocuXKslgsWrhwod3yG/3upct/L/Xp00d+fn4KCAjQwIEDde7cOdvyAwcOqEWLFipTpoxatGihAwcO2L2/c+fO+uqrrxwP79QvICkE8+bNMx4eHubjjz82v/32mxk0aJAJCAgwycnJZtGiRSY4ONhs2rTJxMXFGS8vL3PixAljjDEpKSmmZs2a5uDBgy7+BMVThw4dTExMjNmxY4fZunWr6dSpkwkLCzPnzp2zrTN06FATGhpqVq5caTZv3myaNWtm7r33Xtvy0aNHm5YtW5rExETz9NNPm0aNGtmWxcfHm0aNGplLly459XMVdxs3bjTh4eGmQYMGZtSoUbZx5sI5Tp8+bapWrWr69etnNmzYYPbt22eWL19u9u7da1vnjTfeMP7+/mbhwoVm27Zt5sEHHzQREREmIyPDGGPMBx98YOrUqWN27Nhh3n77bRMUFGRycnKMMcbs27fP1KxZ06Smprrk8xUnr732mgkMDDRLliwx+/fvN/Pnzze+vr7m/ffft63DXBSeb7/91rzwwgtmwYIFRpL5+uuv7Zbf6HdvjDEPPPCAadiwofn555/Njz/+aGrUqGF69+5tW96tWzfzyCOPmN9//9307NnTdO/e3bZs3rx5pkuXLvnKXuyLUdOmTc3w4cNtr7Ozs03lypXNpEmTzJtvvml69eplW1axYkWzceNGY4wxgwcPNpMnT3Z63pLq+PHjRpJZu3atMeZy8XR3dzfz58+3rbNr1y4jycTHxxtjjOnYsaOZPn26McaYnTt3Gh8fH2OMMRcvXjQNGzY0mzZtcvKnKN7Onj1ratasaVasWGFatmxpK0bMhfM8//zz5v7777/m8pycHBMSEmLefvtt21hKSorx9PQ0c+fONcYYM2zYMPP8888bY4xJT083kszx48eNMZf/g2TBggWF+AlKjqioKDNgwAC7sW7dupk+ffoYY5gLZ/prMcrL737nzp1Gkt3fPUuXLjUWi8UcPnzYGGNMnTp1zNKlS40xl4tY3bp1jTHGnDlzxtSoUcMkJSXlK2+xPpV28eJFJSQkKDIy0jbm5uamyMhIxcfHq2HDhtq8ebPOnDmjhIQEZWRkqEaNGlq3bp22bNmip556yoXpS5bU1FRJsn3ZX0JCgrKysuzmpnbt2goLC1N8fLwkqWHDhlq1apUuXbqk5cuXq0GDBpKkt956S61atVLjxo2d/CmKt+HDhysqKsrudy4xF860aNEiNW7cWD169FDFihV111136aOPPrIt379/v44dO2Y3F/7+/rrnnnvs5mLdunXKyMjQ8uXLValSJVWoUEGxsbHy8vLSww8/7PTPVRzde++9WrlypX7//XdJ0rZt27Ru3Tp17NhREnPhSnn53cfHxysgIMDu757IyEi5ublpw4YNki7Pz/fff6+cnBx99913tr+3xowZo+HDhys0NDR/AfNVp4qIw4cPG0nmp59+shsfM2aMadq0qTHGmHHjxpnq1aubO+64wyxYsMBkZmaaO+64w2zevNlMmTLF3H777ebee+81O3bscMVHKBGys7NNVFSUue+++2xjsbGxxsPDI9e6TZo0Mc8995wx5vJ/IfTu3duEhYWZFi1amN9++838/vvvpmbNmubkyZNmyJAhJiIiwvTo0cOkpKQ47fMUR3PnzjV33HGH7TD0/x4xYi6cx9PT03h6epqxY8eaLVu2mJkzZxovLy8zZ84cY4wx69evN5LMkSNH7N7Xo0cP07NnT2PM5aN0Tz75pAkPDzeNGzc2P/74ozl16pSpVq2aSUpKMi+88IKpXr26ad++vfnzzz+d/hmLi+zsbPP8888bi8ViSpcubSwWi3n99ddty5kL59Ffjhjl5Xf/2muvmdtvvz3XtoKCgsy0adOMMcb8+eefJioqyoSGhpqoqCjz559/mrVr15rGjRubU6dOmR49epiIiAgzZMgQk5mZmee8xeIrQW7G+PHjNX78eNvrCRMmKDIyUu7u7po4caK2b9+uJUuW6PHHH1dCQoLrghZjw4cP144dO7Ru3TqH3ufv76+4uDi7sTZt2ujtt99WbGys9u3bp8TERA0aNEivvPIKF/9ew6FDhzRq1CitWLFCXl5e+doGc1EwcnJy1LhxY73++uuSpLvuuks7duzQjBkz1Ldv3zxtw93dXVOnTrUb69+/v5566in98ssvWrhwobZt26a33npLTz31VP4uLr0FfPHFF4qNjVVcXJzq1aunrVu36umnn1blypWZixLitttu05IlS2yvMzMz1aFDB33yySeaOHGiypYtq8TERD3wwAOaOXNmni+UL9an0ipUqKBSpUrZ3V0jScnJyQoJCcm1/u7du/XZZ5/p1Vdf1Zo1a9SiRQsFBQWpZ8+e2rJli86ePeus6CXGiBEjtGTJEq1evVpVqlSxjYeEhOjixYtKSUmxW/9acyNJMTExCggI0EMPPaQ1a9aoa9eucnd3V48ePbRmzZpC/BTFW0JCgo4fP667775bpUuXVunSpbV27Vp98MEHKl26tIKDg5kLJ6lUqZLq1q1rN1anTh0lJSVJku33nde/syRp9erV+u233zRixAitWbNGnTp1UpkyZdSzZ0/m4jrGjBmj//u//9Mjjzyi+vXr67HHHtMzzzyjSZMmSWIuXCkvv/uQkBAdP37cbvmlS5d0+vTpa87P66+/rvbt26tRo0Zas2aNunfvLnd3d3Xr1s2h+SnWxcjDw0ONGjXSypUrbWM5OTlauXKlmjdvbreuMUZDhgzR5MmT5evrq+zsbGVlZUmS7X+zs7OdF76YM8ZoxIgR+vrrr7Vq1SpFRETYLW/UqJHc3d3t5iYxMVFJSUm55kaSTpw4oVdeeUVTpkyRpFzzw9xcW9u2bbV9+3Zt3brV9tO4cWP16dPH9mfmwjnuu+++XI+t+P3331W1alVJUkREhEJCQuzmIi0tTRs2bLjqXFx5zMLMmTNVqlQp5sIB6enpcnOz/1dcqVKllJOTI4m5cKW8/O6bN2+ulJQUuzM5q1atUk5Oju65555c29y1a5fi4uL06quvSrrJv7ccPllYxMybN894enqaOXPmmJ07d5rBgwebgIAAc+zYMbv1Zs2aZXcr34YNG4yfn5+Jj483L7/8su1qduTNsGHDjL+/v1mzZo05evSo7Sc9Pd22ztChQ01YWJhZtWqV2bx5s2nevLlp3rz5Vbf36KOPmilTpthev/nmm6ZRo0Zm586dpmPHjubJJ58s9M9UkvzvNUbGMBfOsnHjRlO6dGnz2muvmT179pjY2Fjj4+NjPvvsM9s6b7zxhgkICDD//e9/za+//moeeuihXLcpX/HPf/7TPPvss7bXn3/+uQkLCzPbtm0zAwcONJ06dXLK5yqO+vbta2677Tbb7foLFiwwFSpUsF1XZwxzUZjOnj1rfvnlF/PLL78YSWby5Mnml19+sT0iJy+/+wceeMDcddddZsOGDWbdunWmZs2adrfrX5GTk2Puv/9+s3jxYtvYsGHDTFRUlNm5c6e56667zFtvvZXn7MW+GBljzJQpU0xYWJjx8PAwTZs2NT///LPd8mPHjpmqVavabvG7YsKECaZ8+fKmdu3aZsOGDc6MXOxJuupPTEyMbZ2MjAzz5JNPmnLlyhkfHx/z8MMPm6NHj+ba1rJly0zTpk1Ndna2bez8+fOmR48epmzZsqZt27YmOTnZGR+rxPhrMWIunGfx4sXmjjvuMJ6enqZ27dpm1qxZdstzcnLMSy+9ZIKDg42np6dp27atSUxMzLWd7du3mxo1atg9Gyw7O9sMGzbM+Pn5mSZNmpg9e/YU+ucprtLS0syoUaNMWFiY8fLyMtWqVTMvvPCC3UW4zEXhWb169VX/HdG3b19jTN5+96dOnTK9e/c2vr6+xs/Pz/Tv39+cPXs2175mzJhhd+DDGGOSk5NN27ZtTdmyZU2PHj3M+fPn85zdYsz/PAYUAADgFlasrzECAAAoSBQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAQJe/cNpischisei99967qW21atXKtq2tW7cWSD4AzkExAnBD8fHxKlWqlKKionItW7NmjSwWS64vqZWk8PBwu5JxpSxYLBb5+/vrvvvu06pVq2zL+/Xrp65du9q9tlgsGjp0aK5tDx8+XBaLRf369bMbP3TokAYMGKDKlSvLw8NDVatW1ahRo3Tq1Kkbfs569erp6NGjGjx4sG1s9OjRKl++vEJDQxUbG2u3/vz589WlS5dc21mwYIE2btx4w/0BKHooRgBuaPbs2Ro5cqR++OEHHTly5Ka2FRMTo6NHj2r9+vWqUKGCOnfurH379l1z/dDQUM2bN08ZGRm2sQsXLiguLk5hYWF26+7bt0+NGzfWnj17NHfuXO3du1czZsywfbH06dOnr5utdOnSCgkJkY+PjyRp8eLFiouL03fffae33npLTzzxhE6ePClJSk1N1QsvvKCpU6fm2k758uUVFBSU598JgKKDYgTgus6dO6fPP/9cw4YNU1RUlObMmXNT2wsICFBISIjuuOMOTZ8+XRkZGVqxYsU117/77rsVGhqqBQsW2MYWLFigsLAw3XXXXXbrDh8+XB4eHvruu+/UsmVLhYWFqWPHjvr+++91+PBhvfDCCw5l3bVrl1q1aqXGjRurd+/e8vPz0/79+yVJzz33nIYNG5arnAEo3ihGAK7riy++UO3atVWrVi1FR0fr448/VkF9xaK3t7ck6eLFi9ddb8CAAYqJibG9/vjjj9W/f3+7dU6fPq3ly5frySeftG33ipCQEPXp00eff/65Q9kbNmyozZs368yZM0pISFBGRoZq1KihdevWacuWLXrqqafyvC0AxQPFCMB1zZ49W9HR0ZKkBx54QKmpqVq7du1Nbzc9PV0vvviiSpUqpZYtW1533ejoaK1bt04HDx7UwYMHtX79elumK/bs2SNjjOrUqXPVbdSpU0dnzpzRiRMn8pyxQ4cOio6OVpMmTdSvXz998sknKlOmjIYNG6YZM2Zo+vTpqlWrlu677z799ttved4ugKKrtKsDACi6EhMTtXHjRn399deSLl+D06tXL82ePVutWrXK1zZ79+6tUqVKKSMjQ0FBQZo9e7YaNGhw3fcEBQXZTuMZYxQVFaUKFSpcdd2COpp1xfjx4zV+/Hjb6wkTJigyMlLu7u6aOHGitm/friVLlujxxx9XQkJCge4bgPNRjABc0+zZs3Xp0iVVrlzZNmaMkaenpz788EP5+/vLz89P0uWLkQMCAuzen5KSIn9/f7uxd999V5GRkfL393foAuUBAwZoxIgRknTVC55r1Kghi8WiXbt26eGHH861fNeuXSpXrtxNXRS9e/duffbZZ/rll1/08ccfq0WLFgoKClLPnj01YMAAnT17VmXLls339gG4HqfSAFzVpUuX9Omnn+qdd97R1q1bbT/btm1T5cqVNXfuXElSzZo15ebmlutoyb59+5Samqrbb7/dbjwkJEQ1atRwuKA88MADunjxorKystShQ4dcywMDA9WuXTtNmzbN7g42STp27JhiY2PVq1cvWSwWh/Z7hTFGQ4YM0eTJk+Xr66vs7GxlZWVJku1/s7Oz87VtAEUHR4wAXNWSJUt05swZDRw4MNdRn+7du2v27NkaOnSoypYtqyeeeELPPvusSpcurfr16+vQoUN6/vnn1axZM917770FkqdUqVLatWuX7c9X8+GHH+ree+9Vhw4dNHHiREVEROi3337TmDFjdNttt+m1117L9/7//e9/KygoyPbcovvuu0/jx4/Xzz//rKVLl6pu3bq5jpgBKH44YgTgqmbPnm075fVX3bt31+bNm/Xrr79Kkt5//3317dtXzz//vOrVq6d+/fqpQYMGWrx4cb6P0FyNn5+f7dTd1dSsWVObN29WtWrV1LNnT1WvXl2DBw9W69atFR8fr/Lly+drv8nJyXrttdf0wQcf2MaaNm2qZ599VlFRUfriiy/s7poDUHxZTEFfqQgAxdD48eO1cOHCAvsKjwMHDigiIkK//PKL7rzzzgLZJoDCxxEjALDavn27fH19NW3atJvaTseOHVWvXr0CSgXAmThiBAC6/IDIK18ZEhQUdNVTiHl1+PBh2wXgYWFh8vDwKJCMAAofxQgAAMCKU2kAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFb/D60PVy7Nlq5qAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb b/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb new file mode 100644 index 0000000000..37876e5bf6 --- /dev/null +++ b/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb @@ -0,0 +1,1433 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AUPIMO\n", + "\n", + "Advance use cases of the metric AUPIMO (pronounced \"a-u-pee-mo\").\n", + "\n", + "> For basic usage, please check the notebook [701a_aupimo.ipynb](./701a_aupimo.ipynb).\n", + "\n", + "Includes:\n", + "- selection of test representative samples for qualitative analysis\n", + "- visualization of the AUPIMO metric with heatmaps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# What is AUPIMO?\n", + "\n", + "The `Area Under the Per-Image Overlap [curve]` (AUPIMO) is a metric of recall (higher is better) designed for visual anomaly detection.\n", + "\n", + "Inspired by the [ROC](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) and [PRO](https://link.springer.com/article/10.1007/s11263-020-01400-4) curves, \n", + "\n", + "> AUPIMO is the area under a curve of True Positive Rate (TPR or _recall_) as a function of False Positive Rate (FPR) restricted to a fixed range. \n", + "\n", + "But:\n", + "- the TPR (Y-axis) is *per-image* (1 image = 1 curve/score);\n", + "- the FPR (X-axis) considers the (average of) **normal** images only; \n", + "- the FPR (X-axis) is in log scale and its range is [1e-5, 1e-4]\\* (harder detection task!).\n", + "\n", + "\\* The score (the area under the curve) is normalized to be in [0, 1].\n", + "\n", + "AUPIMO can be interpreted as\n", + "\n", + "> average segmentation recall in an image given that the model (nearly) does not yield false positives in normal images.\n", + "\n", + "References in the last cell.\n", + "\n", + "![AUROC vs. AUPRO vs. AUPIMO](./roc_pro_pimo.svg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Install `anomalib` using `pip`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO(jpcbertoldo): replace by `pip install anomalib` when AUPIMO is released # noqa: TD003\n", + "%pip install ../.." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Change the directory to have access to the datasets." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "# NOTE: Provide the path to the dataset root directory.\n", + "# If the datasets is not downloaded, it will be downloaded\n", + "# to this directory.\n", + "dataset_root = Path.cwd().parent.parent / \"datasets\" / \"MVTec\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import cv2\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "import pandas as pd\n", + "import torch\n", + "from matplotlib import pyplot as plt\n", + "from matplotlib.ticker import PercentFormatter\n", + "from scipy import stats\n", + "\n", + "from anomalib import TaskType\n", + "from anomalib.data import MVTec\n", + "from anomalib.data.utils import read_image\n", + "from anomalib.engine import Engine\n", + "from anomalib.metrics import AUPIMO\n", + "from anomalib.models import Padim" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "pd.set_option(\"display.float_format\", \"{:.2f}\".format)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basics\n", + "\n", + "This part was covered in the notebook [701a_aupimo.ipynb](701a_aupimo.ipynb), so we'll not discuss it here.\n", + "\n", + "It will train a model and evaluate it using AUPIMO.\n", + "We will use dataset Leather from MVTec AD with `PaDiM` (performance is not the best, but it is fast to train).\n", + "\n", + "> See the notebooks below for more details on:\n", + "> - datamodules: [100_datamodules]((https://github.com/openvinotoolkit/anomalib/tree/main/notebooks/100_datamodules));\n", + "> - models: [200_models](https://github.com/openvinotoolkit/anomalib/tree/main/notebooks/200_models)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# train the model\n", + "task = TaskType.SEGMENTATION\n", + "datamodule = MVTec(\n", + " root=dataset_root,\n", + " category=\"leather\",\n", + " image_size=256,\n", + " train_batch_size=32,\n", + " eval_batch_size=32,\n", + " num_workers=8,\n", + " task=task,\n", + ")\n", + "model = Padim(\n", + " # only use one layer to speed it up\n", + " layers=[\"layer1\"],\n", + " n_features=64,\n", + " backbone=\"resnet18\",\n", + " pre_trained=True,\n", + ")\n", + "engine = Engine(\n", + " pixel_metrics=\"AUPIMO\", # others can be added\n", + " accelerator=\"auto\", # \\<\"cpu\", \"gpu\", \"tpu\", \"ipu\", \"hpu\", \"auto\">,\n", + " devices=1,\n", + " logger=False,\n", + ")\n", + "engine.fit(datamodule=datamodule, model=model)\n", + "# infer\n", + "predictions = engine.predict(dataloaders=datamodule.test_dataloader(), model=model, return_predictions=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute AUPIMO" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Metric `AUPIMO` will save all targets and predictions in buffer. For large datasets this may lead to large memory footprint.\n" + ] + } + ], + "source": [ + "aupimo = AUPIMO(\n", + " # with `False` all the values are returned in a dataclass\n", + " return_average=False,\n", + ")\n", + "\n", + "anomaly_maps = []\n", + "masks = []\n", + "labels = []\n", + "image_paths = []\n", + "for batch in predictions:\n", + " anomaly_maps.append(batch_anomaly_maps := batch[\"anomaly_maps\"].squeeze(dim=1))\n", + " masks.append(batch_masks := batch[\"mask\"])\n", + " labels.append(batch[\"label\"])\n", + " image_paths.append(batch[\"image_path\"])\n", + " aupimo.update(anomaly_maps=batch_anomaly_maps, masks=batch_masks)\n", + "\n", + "# list[list[str]] -> list[str]\n", + "image_paths = [item for sublist in image_paths for item in sublist]\n", + "anomaly_maps = torch.cat(anomaly_maps, dim=0)\n", + "masks = torch.cat(masks, dim=0)\n", + "labels = torch.cat(labels, dim=0)\n", + "\n", + "# `pimo_result` has the PIMO curves of each image\n", + "# `aupimo_result` has the AUPIMO values\n", + "# i.e. their Area Under the Curve (AUC)\n", + "pimo_result, aupimo_result = aupimo.compute()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Statistics and score distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MEAN\n", + "aupimo_result.aupimos[labels == 1].mean().item()=0.742841961578308\n", + "OTHER STATISTICS\n", + "DescribeResult(nobs=92, minmax=(0.0, 1.0), mean=0.742841961578308, variance=0.08757792704451817, skewness=-0.9285678601866055, kurtosis=-0.3299211772047075)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHeUlEQVR4nO3deVyVZeL+8eugrCKgiKAJgktuqZVLWo0raoqW6aiZlFtuqVk21tdpUcuyZbLFXBvDmkDLMkctNXMrjVwwTVNJc8FccAVUEBHu3x8ez29OuHAQzgH8vF8vXuO5n+c8z3W4G7t6tmMxxhgBAABAbq4OAAAAUFRQjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMABQba9askcVi0Zo1a2xj/fr1U3h4uFP2Hx4ern79+tlez5kzRxaLRZs3b3bK/lu1aqVWrVo5ZV/ArYpiBBQB06ZNk8Vi0T333HPV5QcOHJDFYtG//vWvqy7/17/+JYvFogMHDtjGWrVqJYvFYvspX768mjRpoo8//lg5OTm29fr16ydfX1+77V15b82aNa+6vxUrVti2++WXX+Za/ttvvyk6Olq33XabPD09VblyZfXp00e//fbbjX4VTrFz506NHz/e7vdVVBTlbMCtoLSrAwCQYmNjFR4ero0bN2rv3r2qUaNGgWy3SpUqmjRpkiTpxIkT+vTTTzVw4ED9/vvveuONN677Xi8vL+3du1cbN25U06ZNc+X18vLShQsXcr1vwYIF6t27t8qXL6+BAwcqIiJCBw4c0OzZs/Xll19q3rx5evjhhwvk80nSRx99ZFf08mLnzp2aMGGCWrVq5dDRpsTERLm5Fe5/T14v23fffVeo+wbAESPA5fbv36+ffvpJkydPVlBQkGJjYwts2/7+/oqOjlZ0dLSeeeYZrV+/XlWqVNGHH36orKys6763evXqqlWrlubOnWs3fuHCBX399deKiorK9Z4//vhDjz32mKpVq6Zff/1VEydO1MCBA/Xqq6/q119/VbVq1fTYY49p3759BfYZ3d3d5enpWWDb+ytjjDIyMiRJnp6ecnd3L7R93YiHh4c8PDxctn/gVkAxAlwsNjZW5cqVU1RUlP7+978XaDH6Kx8fHzVr1kznz5/XiRMnbrh+79699fnnn9sdkVm8eLHS09PVs2fPXOu//fbbSk9P16xZsxQUFGS3rEKFCpo5c6bOnz+vt95664b7/vPPP9W1a1eVKVNGFStW1DPPPKPMzMxc613tGqN58+apUaNGKlu2rPz8/FS/fn29//77ki5fF9SjRw9JUuvWrW2nBK9ctxQeHq7OnTtr+fLlaty4sby9vTVz5kzbsv+9xuiK9PR0DRkyRIGBgfLz89Pjjz+uM2fO2K1jsVg0fvz4XO/9323eKNvVrjE6fvy4Bg4cqODgYHl5ealhw4b65JNP7Nb531Oxs2bNUvXq1eXp6akmTZpo06ZNuTIBtzJOpQEuFhsbq27dusnDw0O9e/fW9OnTtWnTJjVp0qRQ9rdv3z6VKlVKAQEBN1z30Ucf1fjx47VmzRq1adNGkhQXF6e2bduqYsWKudZfvHixwsPD9be//e2q22vRooXCw8P1zTffXHe/GRkZatu2rZKSkvTUU0+pcuXK+s9//qNVq1bdMPOKFSvUu3dvtW3bVm+++aYkadeuXVq/fr1GjRqlFi1a6KmnntIHH3ygf/7zn6pTp44k2f5XunzKrHfv3hoyZIgGDRqkWrVqXXefI0aMUEBAgMaPH6/ExERNnz5dBw8etF0snld5yfa/MjIy1KpVK+3du1cjRoxQRESE5s+fr379+iklJUWjRo2yWz8uLk5nz57VkCFDZLFY9NZbb6lbt27at2+fS4+EAUUJxQhwoYSEBO3evVtTpkyRJN1///2qUqWKYmNjC6QYZWdn6+TJk5KkkydPavr06dqyZYu6dOkiHx+fG76/Zs2aaty4seLi4tSmTRulpKTo22+/1UcffZRr3dTUVB05ckQPPfTQdbfZoEEDLVq0SGfPnlXZsmWvus6sWbP0+++/64svvrAdQRk0aJAaNmx4w8zffPON/Pz8tHz5cpUqVSrX8mrVqulvf/ubPvjgA7Vr1+6qd3nt3btXy5YtU4cOHW64P+nyKa6VK1faykXVqlX13HPPafHixXrwwQfztI28Zvtfs2bN0q5du/TZZ5+pT58+kqShQ4eqZcuWevHFFzVgwAC733FSUpL27NmjcuXKSZJq1aqlhx56SMuXL1fnzp3znBMoyTiVBrhQbGysgoOD1bp1a0mXT7f06tVL8+bNU3Z29k1vf/fu3QoKClJQUJDq1KmjKVOmKCoqSh9//HGet/Hoo49qwYIFunjxor788kuVKlXqqhdPnz17VpKuWXauuLI8LS3tmut8++23qlSpkv7+97/bxnx8fDR48OAb5g0ICND58+e1YsWKG657LREREXkuRZI0ePBguyMuw4YNU+nSpfXtt9/mO0NefPvttwoJCVHv3r1tY+7u7nrqqad07tw5rV271m79Xr162UqRJNuRvYK85gso7ihGgItkZ2dr3rx5at26tfbv36+9e/dq7969uueee5ScnKyVK1c6vM2/nrYJDw/XihUr9P3332vdunU6duyYlixZogoVKuR5m4888ohSU1O1dOlSxcbGqnPnzlctP1fGrhSka8lLgTp48KBq1KiR6/Pc6JSWJD355JO6/fbb1bFjR1WpUkUDBgzQsmXLbvi+/xUREeHQ+n99rIGvr68qVapU6LfcHzx4UDVr1sx1p9yVU28HDx60Gw8LC7N7faUk/fV6KOBWxqk0wEVWrVqlo0ePat68eZo3b16u5bGxsWrfvr2ky7fOS7LdHfVX6enpdutdUaZMGUVGRt5UzkqVKqlVq1Z65513tH79en311VdXXc/f31+VKlXSr7/+et3t/frrr7rtttvk5+d3U7mupWLFitq6dauWL1+upUuXaunSpYqJidHjjz+e66Lka/H29i6UbFdTEEcG8+pqpxaly3feAbiMI0aAi8TGxqpixYqaP39+rp/evXvr66+/thWhoKAg+fj4KDEx8arbSkxMlI+Pj0NHghzx6KOP6scff5Sfn586dep0zfU6d+6s/fv3a926dVdd/uOPP+rAgQM3vJ6latWq+uOPP3L9C/tan/+vPDw81KVLF02bNk1//PGHhgwZok8//VR79+6VlPvI2s3as2eP3etz587p6NGjdnfLlStXTikpKXbrXbx4UUePHrUbcyRb1apVtWfPnlzPcdq9e7dtOQDHUIwAF8jIyNCCBQvUuXNn/f3vf8/1M2LECJ09e1aLFi2SdPm/9Nu3b6/FixcrKSnJbltJSUlavHix2rdvf80jAjfr73//u8aNG6dp06Zd9zk6Y8aMkbe3t4YMGaJTp07ZLTt9+rSGDh0qHx8fjRkz5rr769Spk44cOWL3VO0rjwG4kb/u183NTQ0aNJAk2+3+ZcqUkaRcRSW/Zs2aZfdcqOnTp+vSpUvq2LGjbax69er64Ycfcr3vr0eMHMnWqVMnHTt2TJ9//rlt7NKlS5oyZYp8fX3VsmXL/Hwc4JbGqTTABa7clXWtO5aaNWtme9hjr169JEmvv/66mjVrprvvvluDBw9WeHi4Dhw4oFmzZslisej1118vtLz+/v5XfQbPX9WsWVOffPKJ+vTpo/r16+d68vXJkyc1d+5cVa9e/brbGTRokD788EM9/vjjSkhIUKVKlfSf//wnT3fSPfHEEzp9+rTatGmjKlWq6ODBg5oyZYruvPNO27U3d955p0qVKqU333xTqamp8vT0VJs2ba76CIK8uHjxotq2bauePXsqMTFR06ZN0/333283v0888YSGDh2q7t27q127dtq2bZuWL1+e6yifI9kGDx6smTNnql+/fkpISFB4eLi+/PJLrV+/Xu+9994NL4QHcBUGgNN16dLFeHl5mfPnz19znX79+hl3d3dz8uRJ29iuXbtMr169TMWKFU3p0qVNxYoVzSOPPGJ27dqV6/0tW7Y09erVu2GWvn37mjJlyjj83tWrVxtJZv78+bmW/frrr6Z3796mUqVKxt3d3YSEhJjevXub7du33zDPFQcPHjQPPvig8fHxMRUqVDCjRo0yy5YtM5LM6tWr7fJXrVrV9vrLL7807du3NxUrVjQeHh4mLCzMDBkyxBw9etRu+x999JGpVq2aKVWqlN02q1ataqKioq6aqWrVqqZv37621zExMUaSWbt2rRk8eLApV66c8fX1NX369DGnTp2ye292drZ5/vnnTYUKFYyPj4/p0KGD2bt3b65tXi9by5YtTcuWLe3WTU5ONv379zcVKlQwHh4epn79+iYmJsZunf379xtJ5u233871mSSZcePGXfXzArciizFcdQcAACBxjREAAIANxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKxK/AMec3JydOTIEZUtW7bAvwYAAAAUDmOMzp49q8qVK+f6ouTCVOKL0ZEjRxQaGurqGAAAIB8OHTqkKlWqOG1/Jb4YXXkk/v79+1W+fHkXp7m1ZWVl6bvvvlP79u3l7u7u6ji3NOaiaGE+ig7moug4ffq0IiIinP7VNiW+GF05fVa2bFn5+fm5OM2tLSsrSz4+PvLz8+MvHBdjLooW5qPoYC6KjitfzOzsy2C4+BoAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVqVdHQAAABSspKQknTx50tUxbkpaWppL9ksxAgCgBElKSlKt2nV0ISPd1VFuipeXl0v2SzECAKAEOXnypC5kpCuw87NyDwx1dZx8s5zar6NL3nf6filGAACUQO6BofIMqeHqGPlmcjJdsl8uvgYAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsKEYAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYFVkitEbb7whi8Wip59+2jZ24cIFDR8+XIGBgfL19VX37t2VnJzsupAAAKBEKxLFaNOmTZo5c6YaNGhgN/7MM89o8eLFmj9/vtauXasjR46oW7duLkoJAABKOpcXo3PnzqlPnz766KOPVK5cOdt4amqqZs+ercmTJ6tNmzZq1KiRYmJi9NNPP+nnn392YWIAAFBSlXZ1gOHDhysqKkqRkZGaOHGibTwhIUFZWVmKjIy0jdWuXVthYWGKj49Xs2bNrrq9zMxMZWZm2l6npaVJkrKyspSVlVVInwJ5ceX3zzy4HnNRtDAfRUdJmIucnBx5e3vLq7RFHqWMq+PkW46LGopLi9G8efO0ZcsWbdq0KdeyY8eOycPDQwEBAXbjwcHBOnbs2DW3OWnSJE2YMCHX+OrVq+Xj43PTmXHzVqxY4eoIsGIuihbmo+go7nMxd+5c65+yXZrjZqSnh+rRGOfv12XF6NChQxo1apRWrFghLy+vAtvu2LFjNXr0aNvrtLQ0hYaGqnXr1goMDCyw/cBxWVlZWrFihdq1ayd3d3dXx7mlMRdFC/NRdJSEudi2bZtatGih4EffkEdwNVfHybeco4dcsl+XFaOEhAQdP35cd999t20sOztbP/zwgz788EMtX75cFy9eVEpKit1Ro+TkZIWEhFxzu56envL09Mw17u7uXmz/IS9pmIuig7koWpiPoqM4z4Wbm5syMjJ04ZKRyba4Ok6+mUuu2a/LilHbtm21fft2u7H+/furdu3aev755xUaGip3d3etXLlS3bt3lyQlJiYqKSlJzZs3d0VkAABQwrmsGJUtW1Z33HGH3ViZMmUUGBhoGx84cKBGjx6t8uXLy8/PTyNHjlTz5s2veeE1AADAzXD5XWnX8+6778rNzU3du3dXZmamOnTooGnTprk6FgAAKKGKVDFas2aN3WsvLy9NnTpVU6dOdU0gAABwS3H5Ax4BAACKCooRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsKEYAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAAACsSufnTVlZWTp27JjS09MVFBSk8uXLF3QuAAAAp8vzEaOzZ89q+vTpatmypfz8/BQeHq46deooKChIVatW1aBBg7Rp06bCzAoAAFCo8lSMJk+erPDwcMXExCgyMlILFy7U1q1b9fvvvys+Pl7jxo3TpUuX1L59ez3wwAPas2dPYecGAAAocHk6lbZp0yb98MMPqlev3lWXN23aVAMGDNCMGTMUExOjH3/8UTVr1izQoAAAAIUtT8Vo7ty5edqYp6enhg4delOBAAAAXOWm70pLS0vTwoULtWvXroLIAwAA4DIOF6OePXvqww8/lCRlZGSocePG6tmzpxo0aKCvvvqqwAMCAAA4i8PF6IcfftDf/vY3SdLXX38tY4xSUlL0wQcfaOLEiQUeEAAAwFkcLkapqam25xYtW7ZM3bt3l4+Pj6KiorgbDQAAFGsOF6PQ0FDFx8fr/PnzWrZsmdq3by9JOnPmjLy8vAo8IAAAgLM4/OTrp59+Wn369JGvr6/CwsLUqlUrSZdPsdWvX7+g8wEAADiNw8XoySefVNOmTXXo0CG1a9dObm6XDzpVq1aNa4wAAECxlq/vSmvcuLEaNGig/fv3q3r16ipdurSioqIKOhsAAIBTOXyNUXp6ugYOHCgfHx/Vq1dPSUlJkqSRI0fqjTfeKPCAAAAAzuJwMRo7dqy2bdumNWvW2F1sHRkZqc8//7xAwwEAADiTw6fSFi5cqM8//1zNmjWTxWKxjderV09//PFHgYYDAABwJoePGJ04cUIVK1bMNX7+/Hm7ogQAAFDcOFyMGjdurG+++cb2+koZ+ve//63mzZsXXDIAAAAnc/hU2uuvv66OHTtq586dunTpkt5//33t3LlTP/30k9auXVsYGQEAAJzC4SNG999/v7Zu3apLly6pfv36+u6771SxYkXFx8erUaNGhZERAADAKfL1HKPq1avro48+KugsAAAALuVwMUpLS7vquMVikaenpzw8PG46FAAAgCs4XIwCAgKue/dZlSpV1K9fP40bN872dSEAAADFgcPFaM6cOXrhhRfUr18/NW3aVJK0ceNGffLJJ3rxxRd14sQJ/etf/5Knp6f++c9/FnhgAACAwuJwMfrkk0/0zjvvqGfPnraxLl26qH79+po5c6ZWrlypsLAwvfbaaxQjAABQrDh8ruunn37SXXfdlWv8rrvuUnx8vKTLd65d+Q41AACA4sLhYhQaGqrZs2fnGp89e7ZCQ0MlSadOnVK5cuVuPh0AAIATOXwq7V//+pd69OihpUuXqkmTJpKkzZs3a/fu3fryyy8lSZs2bVKvXr0KNikAAEAhc7gYPfjgg0pMTNTMmTOVmJgoSerYsaMWLlyo8PBwSdKwYcMKNCQAAIAz5OsBj+Hh4Zo0aVJBZwEAAHCpfBUjSUpPT1dSUpIuXrxoN96gQYObDgUAAOAKDhejEydOqH///lq6dOlVl2dnZ990KAAAAFdw+K60p59+WikpKdqwYYO8vb21bNkyffLJJ6pZs6YWLVpUGBkBAACcwuEjRqtWrdJ///tfNW7cWG5ubqpataratWsnPz8/TZo0SVFRUYWREwAAoNA5fMTo/PnzqlixoiSpXLlyOnHihCSpfv362rJlS8GmAwAAcCKHi1GtWrVst+k3bNhQM2fO1OHDhzVjxgxVqlSpwAMCAAA4i8PFaNSoUTp69Kgkady4cVq6dKnCwsL0wQcf6PXXX3doW9OnT1eDBg3k5+cnPz8/NW/e3O6i7gsXLmj48OEKDAyUr6+vunfvruTkZEcjAwAA5InD1xhFR0fb/tyoUSMdPHhQu3fvVlhYmCpUqODQtqpUqaI33nhDNWvWlDFGn3zyiR566CH98ssvqlevnp555hl98803mj9/vvz9/TVixAh169ZN69evdzQ2AADADeX7OUZX+Pj46O67787Xe7t06WL3+rXXXtP06dP1888/q0qVKpo9e7bi4uLUpk0bSVJMTIzq1Kmjn3/+Wc2aNbvZ6AAAAHYcLkbGGH355ZdavXq1jh8/rpycHLvlCxYsyFeQ7OxszZ8/X+fPn1fz5s2VkJCgrKwsRUZG2tapXbu2wsLCFB8ff81ilJmZqczMTNvrtLQ0SVJWVpaysrLylQ0F48rvn3lwPeaiaGE+io6SMBc5OTny9vaWV2mLPEoZV8fJt5ybPnSTPw7v9umnn9bMmTPVunVrBQcHy2Kx3FSA7du3q3nz5rpw4YJ8fX319ddfq27dutq6das8PDwUEBBgt35wcLCOHTt2ze1NmjRJEyZMyDW+evVq+fj43FRWFIwVK1a4OgKsmIuihfkoOor7XMydO9f6p+L70OX09FA9GuP8/TpcjP7zn/9owYIF6tSpU4EEqFWrlrZu3arU1FR9+eWX6tu3r9auXZvv7Y0dO1ajR4+2vU5LS1NoaKhat26twMDAgoiMfMrKytKKFSvUrl07ubu7uzrOLY25KFqYj6KjJMzFtm3b1KJFCwU/+oY8gqu5Ok6+5Rw95JL9OlyM/P39Va1awf2iPTw8VKNGDUmXL+betGmT3n//ffXq1UsXL15USkqK3VGj5ORkhYSEXHN7np6e8vT0zDXu7u5ebP8hL2mYi6KDuShamI+iozjPhZubmzIyMnThkpHJvrmzOq5kLrlmvw7frj9+/HhNmDBBGRkZhZFHOTk5yszMVKNGjeTu7q6VK1faliUmJiopKUnNmzcvlH0DAIBbm8NHjHr27Km5c+eqYsWKCg8Pz9WoHXn69dixY9WxY0eFhYXp7NmziouL05o1a7R8+XL5+/tr4MCBGj16tMqXLy8/Pz+NHDlSzZs35440AABQKBwuRn379lVCQoKio6Nv+uLr48eP6/HHH9fRo0fl7++vBg0aaPny5WrXrp0k6d1335Wbm5u6d++uzMxMdejQQdOmTcv3/gAAAK7H4WL0zTffaPny5br//vtveuezZ8++7nIvLy9NnTpVU6dOvel9AQAA3IjD1xiFhobKz8+vMLIAAAC4lMPF6J133tFzzz2nAwcOFEIcAAAA18nXd6Wlp6erevXq8vHxyXXx9enTpwssHAAAgDM5XIzee++9QogBAADgevm6Kw0AAKAkylMxSktLs11wfeVLWa+FC7MBAEBxladiVK5cOR09elQVK1ZUQEDAVZ9dZIyRxWJRdnbx/cI6AABwa8tTMVq1apXKly8v6fK31AMAAJREeSpGLVu2vOqfAQAAShKHn2MEAABQUlGMAAAArChGAAAAVnkqRosWLVJWVlZhZwEAAHCpPBWjhx9+WCkpKZKkUqVK6fjx44WZCQAAwCXyVIyCgoL0888/S/r/zysCAAAoafJ0u/7QoUP10EMPyWKxyGKxKCQk5Jrr8oBHAABQXOWpGI0fP16PPPKI9u7dqwcffFAxMTEKCAgo5GgAAADOlecvka1du7Zq166tcePGqUePHvLx8SnMXAAAAE6X52J0xbhx4yRJJ06cUGJioiSpVq1aCgoKKthkAAAATubwc4zS09M1YMAAVa5cWS1atFCLFi1UuXJlDRw4UOnp6YWREQAAwCkcLkbPPPOM1q5dq0WLFiklJUUpKSn673//q7Vr1+rZZ58tjIwAAABO4fCptK+++kpffvmlWrVqZRvr1KmTvL291bNnT02fPr0g8wEAADhNvk6lBQcH5xqvWLEip9IAAECx5nAxat68ucaNG6cLFy7YxjIyMjRhwgQ1b968QMMBAAA4k8On0t5//3116NBBVapUUcOGDSVJ27Ztk5eXl5YvX17gAQEAAJzF4WJ0xx13aM+ePYqNjdXu3bslSb1791afPn3k7e1d4AEBAACcxeFiJEk+Pj4aNGhQQWcBAABwKYevMQIAACipKEYAAABWFCMAAAArh4pRdna2fvjhB6WkpBRSHAAAANdxqBiVKlVK7du315kzZworDwAAgMs4fCrtjjvu0L59+wojCwAAgEs5XIwmTpyof/zjH1qyZImOHj2qtLQ0ux8AAIDiyuHnGHXq1EmS9OCDD8pisdjGjTGyWCzKzs4uuHQAAABO5HAxWr16dWHkAAAAcDmHi1HLli0LIwcAAIDL5es5Rj/++KOio6N177336vDhw5Kk//znP1q3bl2BhgMAAHAmh4vRV199pQ4dOsjb21tbtmxRZmamJCk1NVWvv/56gQcEAABwlnzdlTZjxgx99NFHcnd3t43fd9992rJlS4GGAwAAcCaHi1FiYqJatGiRa9zf358nYgMAgGLN4WIUEhKivXv35hpft26dqlWrViChAAAAXMHhYjRo0CCNGjVKGzZskMVi0ZEjRxQbG6t//OMfGjZsWGFkBAAAcAqHb9f/v//7P+Xk5Kht27ZKT09XixYt5OnpqX/84x8aOXJkYWQEAABwCoeLkcVi0QsvvKAxY8Zo7969OnfunOrWrStfX9/CyAcAAOA0DhejKzw8PFS2bFmVLVuWUgQAAEoEh68xunTpkl566SX5+/srPDxc4eHh8vf314svvqisrKzCyAgAAOAUDh8xGjlypBYsWKC33npLzZs3lyTFx8dr/PjxOnXqlKZPn17gIQEAAJzB4WIUFxenefPmqWPHjraxBg0aKDQ0VL1796YYAQCAYsvhU2menp4KDw/PNR4RESEPD4+CyAQAAOASDhejESNG6NVXX7V9R5okZWZm6rXXXtOIESMKNBwAAIAz5elUWrdu3exef//996pSpYoaNmwoSdq2bZsuXryotm3bFnxCAAAAJ8lTMfL397d73b17d7vXoaGhBZcIAADARfJUjGJiYgo7BwAAgMs5fI0RAABASeXw7fqnTp3Syy+/rNWrV+v48ePKycmxW3769OkCCwcAAOBMDhejxx57THv37tXAgQMVHBwsi8VSGLkAAACczuFi9OOPP2rdunW2O9IAAABKCoevMapdu7YyMjIKIwsAAIBLOVyMpk2bphdeeEFr167VqVOnlJaWZvcDAABQXDl8Ki0gIEBpaWlq06aN3bgxRhaLRdnZ2QUWDgAAwJkcLkZ9+vSRu7u74uLiuPgaAACUKA4Xox07duiXX35RrVq1CiMPAACAyzh8jVHjxo116NChwsgCAADgUg4fMRo5cqRGjRqlMWPGqH79+nJ3d7db3qBBgwILBwAA4EwOF6NevXpJkgYMGGAbs1gsXHwNAACKPYeL0f79+wsjBwAAgMs5fI1R1apVr/vjiEmTJqlJkyYqW7asKlasqK5duyoxMdFunQsXLmj48OEKDAyUr6+vunfvruTkZEdjAwAA3JDDR4w+/fTT6y5//PHH87yttWvXavjw4WrSpIkuXbqkf/7zn2rfvr127typMmXKSJKeeeYZffPNN5o/f778/f01YsQIdevWTevXr3c0OgAAwHU5XIxGjRpl9zorK0vp6eny8PCQj4+PQ8Vo2bJldq/nzJmjihUrKiEhQS1atFBqaqpmz56tuLg42wMlY2JiVKdOHf38889q1qyZo/EBAACuyeFidObMmVxje/bs0bBhwzRmzJibCpOamipJKl++vCQpISFBWVlZioyMtK1Tu3ZthYWFKT4+/qrFKDMzU5mZmbbXV76mJCsrS1lZWTeVDzfnyu+feXA95qJoYT6KjpIwFzk5OfL29pZXaYs8ShlXx8m3HIcbSsGwGGMK5Le2efNmRUdHa/fu3fl6f05Ojh588EGlpKRo3bp1kqS4uDj179/fruhIUtOmTdW6dWu9+eabubYzfvx4TZgwIdd4XFycfHx88pUNAAA4V3p6uh599FGlpqbKz8/PafstsD5WunRpHTlyJN/vHz58uHbs2GErRfk1duxYjR492vY6LS1NoaGhat26tQIDA29q27g5WVlZWrFihdq1a5fr+VdwLuaiaGE+io6SMBfbtm1TixYtFPzoG/IIrubqOPmWc9Q1D5N2uBgtWrTI7rUxRkePHtWHH36o++67L18hRowYoSVLluiHH35QlSpVbOMhISG6ePGiUlJSFBAQYBtPTk5WSEjIVbfl6ekpT0/PXOPu7u7F9h/ykoa5KDqYi6KF+Sg6ivNcuLm5KSMjQxcuGZns4vt9puaSa/brcDHq2rWr3WuLxaKgoCC1adNG77zzjkPbMsZo5MiR+vrrr7VmzRpFRETYLW/UqJHc3d21cuVKde/eXZKUmJiopKQkNW/e3NHoAAAA1+VwMcrJySmwnQ8fPlxxcXH673//q7Jly+rYsWOSJH9/f3l7e8vf318DBw7U6NGjVb58efn5+WnkyJFq3rw5d6QBAIAC56Jrvi+bPn26JKlVq1Z24zExMerXr58k6d1335Wbm5u6d++uzMxMdejQQdOmTXNyUgAAcCtwuBhlZ2drzpw5WrlypY4fP57rCNKqVavyvK283BDn5eWlqVOnaurUqY5GBQAAcEi+HvA4Z84cRUVF6Y477pDFUnwv7AIAAPhfDhejefPm6YsvvlCnTp0KIw8AAIDLOPwlsh4eHqpRo0ZhZAEAAHAph4vRs88+q/fffz9P1wcBAAAUJw6fSlu3bp1Wr16tpUuXql69erkegLVgwYICCwcAAOBMDhejgIAAPfzww4WRBQAAwKUcLkYxMTGFkQMAAMDlHL7GCAAAoKTKUzF64IEH9PPPP99wvbNnz+rNN9/kYYwAAKBYytOptB49eqh79+7y9/dXly5d1LhxY1WuXFleXl46c+aMdu7cqXXr1unbb79VVFSU3n777cLODQAAUODyVIwGDhyo6OhozZ8/X59//rlmzZql1NRUSZLFYlHdunXVoUMHbdq0SXXq1CnUwAAAAIUlzxdfe3p6Kjo6WtHR0ZKk1NRUZWRkKDAwMNct+wAAAMWRw3elXeHv7y9/f/+CzAIAAOBS3JUGAABgRTECAACwohgBAABYUYwAAACsHC5G1apV06lTp3KNp6SkqFq1agUSCgAAwBUcLkYHDhxQdnZ2rvHMzEwdPny4QEIBAAC4Qp5v11+0aJHtz8uXL7e7VT87O1srV65UeHh4gYYDAABwpjwXo65du0q6/KTrvn372i1zd3dXeHi43nnnnQINBwAA4Ex5LkY5OTmSpIiICG3atEkVKlQotFAAAACu4PCTr/fv318YOQAAAFwuX18JsnLlSq1cuVLHjx+3HUm64uOPPy6QYAAAAM7mcDGaMGGCXnnlFTVu3FiVKlWSxWIpjFwAAABO53AxmjFjhubMmaPHHnusMPIAAAC4jMPPMbp48aLuvffewsgCAADgUg4XoyeeeEJxcXGFkQUAAMClHD6VduHCBc2aNUvff/+9GjRoIHd3d7vlkydPLrBwAAAAzuRwMfr111915513SpJ27Nhht4wLsQEAQHHmcDFavXp1YeQAAABwOYevMQIAACipHD5i1Lp16+ueMlu1atVNBQIAAHAVh4vRleuLrsjKytLWrVu1Y8eOXF8uCwAAUJw4XIzefffdq46PHz9e586du+lAAAAArlJg1xhFR0fzPWkAAKBYK7BiFB8fLy8vr4LaHAAAgNM5fCqtW7dudq+NMTp69Kg2b96sl156qcCCAQAAOJvDxcjf39/utZubm2rVqqVXXnlF7du3L7BgAAAAzuZwMYqJiSmMHAAAAC7ncDG6IiEhQbt27ZIk1atXT3fddVeBhQIAAHAFh4vR8ePH9cgjj2jNmjUKCAiQJKWkpKh169aaN2+egoKCCjojAACAUzh8V9rIkSN19uxZ/fbbbzp9+rROnz6tHTt2KC0tTU899VRhZAQAAHAKh48YLVu2TN9//73q1KljG6tbt66mTp3KxdcAAKBYc/iIUU5Ojtzd3XONu7u7Kycnp0BCAQAAuILDxahNmzYaNWqUjhw5Yhs7fPiwnnnmGbVt27ZAwwEAADiTw8Xoww8/VFpamsLDw1W9enVVr15dERERSktL05QpUwojIwAAgFM4fI1RaGiotmzZou+//167d++WJNWpU0eRkZEFHg4AAMCZ8vUcI4vFonbt2qldu3YFnQcAAMBl8nwqbdWqVapbt67S0tJyLUtNTVW9evX0448/Fmg4AAAAZ8pzMXrvvfc0aNAg+fn55Vrm7++vIUOGaPLkyQUaDgAAwJnyXIy2bdumBx544JrL27dvr4SEhAIJBQAA4Ap5LkbJyclXfX7RFaVLl9aJEycKJBQAAIAr5LkY3XbbbdqxY8c1l//666+qVKlSgYQCAABwhTwXo06dOumll17ShQsXci3LyMjQuHHj1Llz5wINBwAA4Ex5vl3/xRdf1IIFC3T77bdrxIgRqlWrliRp9+7dmjp1qrKzs/XCCy8UWlAAAIDCludiFBwcrJ9++knDhg3T2LFjZYyRdPmZRh06dNDUqVMVHBxcaEEBAAAKm0MPeKxataq+/fZbnTlzRnv37pUxRjVr1lS5cuUKKx8AAIDT5OvJ1+XKlVOTJk0KOgsAAIBLOfwlsgAAACUVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuXFqMffvhBXbp0UeXKlWWxWLRw4UK75cYYvfzyy6pUqZK8vb0VGRmpPXv2uCYsAAAo8VxajM6fP6+GDRtq6tSpV13+1ltv6YMPPtCMGTO0YcMGlSlTRh06dNCFCxecnBQAANwK8vWVIAWlY8eO6tix41WXGWP03nvv6cUXX9RDDz0kSfr0008VHByshQsX6pFHHnFmVAAAcAsostcY7d+/X8eOHVNkZKRtzN/fX/fcc4/i4+NdmAwAAJRULj1idD3Hjh2TJAUHB9uNBwcH25ZdTWZmpjIzM22v09LSJElZWVnKysoqhKTIqyu/f+bB9ZiLooX5KDpKwlzk5OTI29tbXqUt8ihlXB0n33Jc1FCKbDHKr0mTJmnChAm5xlevXi0fHx8XJMJfrVixwtURYMVcFC3MR9FR3Odi7ty51j9luzTHzUhPD9WjMc7fb5EtRiEhIZKk5ORkVapUyTaenJysO++885rvGzt2rEaPHm17nZaWptDQULVu3VqBgYGFlhc3lpWVpRUrVqhdu3Zyd3d3dZxbGnNRtDAfRUdJmItt27apRYsWCn70DXkEV3N1nHzLOXrIJfstssUoIiJCISEhWrlypa0IpaWlacOGDRo2bNg13+fp6SlPT89c4+7u7sX2H/KShrkoOpiLooX5KDqK81y4ubkpIyNDFy4ZmWyLq+Pkm7nkmv26tBidO3dOe/futb3ev3+/tm7dqvLlyyssLExPP/20Jk6cqJo1ayoiIkIvvfSSKleurK5du7ouNAAAKLFcWow2b96s1q1b215fOQXWt29fzZkzR88995zOnz+vwYMHKyUlRffff7+WLVsmLy8vV0UGAAAlmEuLUatWrWTMta+Yt1gseuWVV/TKK684MRUAALhVFdlrjAAgL5KSknTy5ElXx7gpOTk5ro4AwIpiBKDYSkpKUq3adXQhI93VUW6Kt7e35s6dqz///FMRERGujgPc0ihGAIqtkydP6kJGugI7Pyv3wFBXx8m3UmlHJEmnTp2iGAEuRjECUOy5B4bKM6SGq2Pkm6V08b2lGihpiux3pQEAADgbxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsOJLZAEA+Itt27bJza14HjvYtWuXqyMUaxQjAACs/vzzT0lSixYtlJGR4eI0cAWKEQAAVqdOnZIklX9gpLL9Krs4Tf5k7Nus1B8/c3WMYotiBADAX7iXv02lK1R3dYx8yTp1yNURirXieQIVAACgEFCMAAAArChGAAAAVhQjAAAAKy6+htMV5+eDXFGhQgWFhYW5OsZNK+5zwfNaipakpCSdPHnS1TFuSmJionx9fV0dAy5EMYLTlKTng3h5+yhx965iW45K0lygaEhKSlKt2nV0ISPd1VFuire3t+bOnevqGHAhihGcpiQ8H0S6fCvsqSXv6OTJk8W2GJWUueB5LUXHyZMndSEjXYGdn5V7YKir4+Sb+XOrqyPAxShGcLri/HyQkqa4zwXPayl63AND5RlSw9Ux8u1S2hFXR4CLFd+LCwAAAAoYxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYHXLfFfa9u3b5efn5+oYN6VChQrF9ktLS6Jdu3a5OkK+JSYmytfX19Ux8BeJiYlycyue/71anP//APyvW6YYdezYURcuXHB1jJvi5e2jxN27KEculn3ujGSxKDo62tVR8s3b21tz5851dQxYZZ9PkVRVgwYNUkZGhqvjALe0W6YYlYscIhMY4eoY+ZZ16pBOLXlHJ0+epBi5WE7mOckYBXZ+Vu6Boa6Oky/mz62ujoD/kZN5XpJU/oGRyvar7OI0+ZOxb7NSf/zM1TGAm3bLFCP3cpVlCanh6hgoQdwDQ+VZTP+ZupR2xNURcBXu5W9T6QrVXR0jX7JOHXJ1BKBAFM+T2QAAAIWAYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFYUIwAAACuKEQAAgBXFCAAAwIpiBAAAYEUxAgAAsKIYAQAAWFGMAAAArChGAAAAVhQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYlXZ1ADhm165dro6Qb4mJifL19XV1DAAAroliVExknzsjWSyKjo52dZR88/b21ty5c10dAwCAa6IYFRM5meckYxTY+Vm5B4a6Ok6+mD+3ujoCAADXRTEqZtwDQ+UZUsPVMfLlUtoRV0cAAOC6isXF11OnTlV4eLi8vLx0zz33aOPGja6OBAAASqAiX4w+//xzjR49WuPGjdOWLVvUsGFDdejQQcePH3d1NAAAUMIU+WI0efJkDRo0SP3791fdunU1Y8YM+fj46OOPP3Z1NAAAUMIU6WJ08eJFJSQkKDIy0jbm5uamyMhIxcfHuzAZAAAoiYr0xdcnT55Udna2goOD7caDg4O1e/fuq74nMzNTmZmZttepqamSJMuZJJnCi1ro3M4elZeXlyyn9svkZN74DUWQ29ljSk9Pl+X0QeVcvODqOPnGXBQdJWEupJIxH8xF0VFS5sJyJkmSZIyT/+1tirDDhw8bSeann36yGx8zZoxp2rTpVd8zbtw4I4kffvjhhx9++CkBP3/88YczKodNkT5iVKFCBZUqVUrJycl248nJyQoJCbnqe8aOHavRo0fbXqekpKhq1apKSkqSv79/oebF9aWlpSk0NFSHDh2Sn5+fq+Pc0piLooX5KDqYi6IjNTVVYWFhKl++vFP3W6SLkYeHhxo1aqSVK1eqa9eukqScnBytXLlSI0aMuOp7PD095enpmWvc39+ff8iLCD8/P+aiiGAuihbmo+hgLooONzfnXg5dpIuRJI0ePVp9+/ZV48aN1bRpU7333ns6f/68+vfv7+poAACghCnyxahXr146ceKEXn75ZR07dkx33nmnli1bluuCbAAAgJtV5IuRJI0YMeKap85uxNPTU+PGjbvq6TU4F3NRdDAXRQvzUXQwF0WHq+bCYoyz74MDAAAomor0Ax4BAACciWIEAABgRTECAACwohgBAABYlYhiNHXqVIWHh8vLy0v33HOPNm7caFs2evRolS9fXqGhoYqNjbV73/z589WlSxdnxy0RJk2apCZNmqhs2bKqWLGiunbtqsTERLt1Lly4oOHDhyswMFC+vr7q3r273VPMT58+rS5dusjX11d33XWXfvnlF7v3Dx8+XO+8845TPk9J8sYbb8hisejpp5+2jTEXznP48GFFR0crMDBQ3t7eql+/vjZv3mxbbozRyy+/rEqVKsnb21uRkZHas2ePbXlmZqYee+wx+fn56fbbb9f3339vt/23335bI0eOdNrnKa6ys7P10ksvKSIiQt7e3qpevbpeffVVu+/dYi4Kzw8//KAuXbqocuXKslgsWrhwod3yG/3upct/L/Xp00d+fn4KCAjQwIEDde7cOdvyAwcOqEWLFipTpoxatGihAwcO2L2/c+fO+uqrrxwP79QvICkE8+bNMx4eHubjjz82v/32mxk0aJAJCAgwycnJZtGiRSY4ONhs2rTJxMXFGS8vL3PixAljjDEpKSmmZs2a5uDBgy7+BMVThw4dTExMjNmxY4fZunWr6dSpkwkLCzPnzp2zrTN06FATGhpqVq5caTZv3myaNWtm7r33Xtvy0aNHm5YtW5rExETz9NNPm0aNGtmWxcfHm0aNGplLly459XMVdxs3bjTh4eGmQYMGZtSoUbZx5sI5Tp8+bapWrWr69etnNmzYYPbt22eWL19u9u7da1vnjTfeMP7+/mbhwoVm27Zt5sEHHzQREREmIyPDGGPMBx98YOrUqWN27Nhh3n77bRMUFGRycnKMMcbs27fP1KxZ06Smprrk8xUnr732mgkMDDRLliwx+/fvN/Pnzze+vr7m/ffft63DXBSeb7/91rzwwgtmwYIFRpL5+uuv7Zbf6HdvjDEPPPCAadiwofn555/Njz/+aGrUqGF69+5tW96tWzfzyCOPmN9//9307NnTdO/e3bZs3rx5pkuXLvnKXuyLUdOmTc3w4cNtr7Ozs03lypXNpEmTzJtvvml69eplW1axYkWzceNGY4wxgwcPNpMnT3Z63pLq+PHjRpJZu3atMeZy8XR3dzfz58+3rbNr1y4jycTHxxtjjOnYsaOZPn26McaYnTt3Gh8fH2OMMRcvXjQNGzY0mzZtcvKnKN7Onj1ratasaVasWGFatmxpK0bMhfM8//zz5v7777/m8pycHBMSEmLefvtt21hKSorx9PQ0c+fONcYYM2zYMPP8888bY4xJT083kszx48eNMZf/g2TBggWF+AlKjqioKDNgwAC7sW7dupk+ffoYY5gLZ/prMcrL737nzp1Gkt3fPUuXLjUWi8UcPnzYGGNMnTp1zNKlS40xl4tY3bp1jTHGnDlzxtSoUcMkJSXlK2+xPpV28eJFJSQkKDIy0jbm5uamyMhIxcfHq2HDhtq8ebPOnDmjhIQEZWRkqEaNGlq3bp22bNmip556yoXpS5bU1FRJsn3ZX0JCgrKysuzmpnbt2goLC1N8fLwkqWHDhlq1apUuXbqk5cuXq0GDBpKkt956S61atVLjxo2d/CmKt+HDhysqKsrudy4xF860aNEiNW7cWD169FDFihV111136aOPPrIt379/v44dO2Y3F/7+/rrnnnvs5mLdunXKyMjQ8uXLValSJVWoUEGxsbHy8vLSww8/7PTPVRzde++9WrlypX7//XdJ0rZt27Ru3Tp17NhREnPhSnn53cfHxysgIMDu757IyEi5ublpw4YNki7Pz/fff6+cnBx99913tr+3xowZo+HDhys0NDR/AfNVp4qIw4cPG0nmp59+shsfM2aMadq0qTHGmHHjxpnq1aubO+64wyxYsMBkZmaaO+64w2zevNlMmTLF3H777ebee+81O3bscMVHKBGys7NNVFSUue+++2xjsbGxxsPDI9e6TZo0Mc8995wx5vJ/IfTu3duEhYWZFi1amN9++838/vvvpmbNmubkyZNmyJAhJiIiwvTo0cOkpKQ47fMUR3PnzjV33HGH7TD0/x4xYi6cx9PT03h6epqxY8eaLVu2mJkzZxovLy8zZ84cY4wx69evN5LMkSNH7N7Xo0cP07NnT2PM5aN0Tz75pAkPDzeNGzc2P/74ozl16pSpVq2aSUpKMi+88IKpXr26ad++vfnzzz+d/hmLi+zsbPP8888bi8ViSpcubSwWi3n99ddty5kL59Ffjhjl5Xf/2muvmdtvvz3XtoKCgsy0adOMMcb8+eefJioqyoSGhpqoqCjz559/mrVr15rGjRubU6dOmR49epiIiAgzZMgQk5mZmee8xeIrQW7G+PHjNX78eNvrCRMmKDIyUu7u7po4caK2b9+uJUuW6PHHH1dCQoLrghZjw4cP144dO7Ru3TqH3ufv76+4uDi7sTZt2ujtt99WbGys9u3bp8TERA0aNEivvPIKF/9ew6FDhzRq1CitWLFCXl5e+doGc1EwcnJy1LhxY73++uuSpLvuuks7duzQjBkz1Ldv3zxtw93dXVOnTrUb69+/v5566in98ssvWrhwobZt26a33npLTz31VP4uLr0FfPHFF4qNjVVcXJzq1aunrVu36umnn1blypWZixLitttu05IlS2yvMzMz1aFDB33yySeaOHGiypYtq8TERD3wwAOaOXNmni+UL9an0ipUqKBSpUrZ3V0jScnJyQoJCcm1/u7du/XZZ5/p1Vdf1Zo1a9SiRQsFBQWpZ8+e2rJli86ePeus6CXGiBEjtGTJEq1evVpVqlSxjYeEhOjixYtKSUmxW/9acyNJMTExCggI0EMPPaQ1a9aoa9eucnd3V48ePbRmzZpC/BTFW0JCgo4fP667775bpUuXVunSpbV27Vp98MEHKl26tIKDg5kLJ6lUqZLq1q1rN1anTh0lJSVJku33nde/syRp9erV+u233zRixAitWbNGnTp1UpkyZdSzZ0/m4jrGjBmj//u//9Mjjzyi+vXr67HHHtMzzzyjSZMmSWIuXCkvv/uQkBAdP37cbvmlS5d0+vTpa87P66+/rvbt26tRo0Zas2aNunfvLnd3d3Xr1s2h+SnWxcjDw0ONGjXSypUrbWM5OTlauXKlmjdvbreuMUZDhgzR5MmT5evrq+zsbGVlZUmS7X+zs7OdF76YM8ZoxIgR+vrrr7Vq1SpFRETYLW/UqJHc3d3t5iYxMVFJSUm55kaSTpw4oVdeeUVTpkyRpFzzw9xcW9u2bbV9+3Zt3brV9tO4cWP16dPH9mfmwjnuu+++XI+t+P3331W1alVJUkREhEJCQuzmIi0tTRs2bLjqXFx5zMLMmTNVqlQp5sIB6enpcnOz/1dcqVKllJOTI4m5cKW8/O6bN2+ulJQUuzM5q1atUk5Oju65555c29y1a5fi4uL06quvSrrJv7ccPllYxMybN894enqaOXPmmJ07d5rBgwebgIAAc+zYMbv1Zs2aZXcr34YNG4yfn5+Jj483L7/8su1qduTNsGHDjL+/v1mzZo05evSo7Sc9Pd22ztChQ01YWJhZtWqV2bx5s2nevLlp3rz5Vbf36KOPmilTpthev/nmm6ZRo0Zm586dpmPHjubJJ58s9M9UkvzvNUbGMBfOsnHjRlO6dGnz2muvmT179pjY2Fjj4+NjPvvsM9s6b7zxhgkICDD//e9/za+//moeeuihXLcpX/HPf/7TPPvss7bXn3/+uQkLCzPbtm0zAwcONJ06dXLK5yqO+vbta2677Tbb7foLFiwwFSpUsF1XZwxzUZjOnj1rfvnlF/PLL78YSWby5Mnml19+sT0iJy+/+wceeMDcddddZsOGDWbdunWmZs2adrfrX5GTk2Puv/9+s3jxYtvYsGHDTFRUlNm5c6e56667zFtvvZXn7MW+GBljzJQpU0xYWJjx8PAwTZs2NT///LPd8mPHjpmqVavabvG7YsKECaZ8+fKmdu3aZsOGDc6MXOxJuupPTEyMbZ2MjAzz5JNPmnLlyhkfHx/z8MMPm6NHj+ba1rJly0zTpk1Ndna2bez8+fOmR48epmzZsqZt27YmOTnZGR+rxPhrMWIunGfx4sXmjjvuMJ6enqZ27dpm1qxZdstzcnLMSy+9ZIKDg42np6dp27atSUxMzLWd7du3mxo1atg9Gyw7O9sMGzbM+Pn5mSZNmpg9e/YU+ucprtLS0syoUaNMWFiY8fLyMtWqVTMvvPCC3UW4zEXhWb169VX/HdG3b19jTN5+96dOnTK9e/c2vr6+xs/Pz/Tv39+cPXs2175mzJhhd+DDGGOSk5NN27ZtTdmyZU2PHj3M+fPn85zdYsz/PAYUAADgFlasrzECAAAoSBQjAAAAK4oRAACAFcUIAADAimIEAABgRTECAACwohgBAABYUYwAQJe/cNpischisei99967qW21atXKtq2tW7cWSD4AzkExAnBD8fHxKlWqlKKionItW7NmjSwWS64vqZWk8PBwu5JxpSxYLBb5+/vrvvvu06pVq2zL+/Xrp65du9q9tlgsGjp0aK5tDx8+XBaLRf369bMbP3TokAYMGKDKlSvLw8NDVatW1ahRo3Tq1Kkbfs569erp6NGjGjx4sG1s9OjRKl++vEJDQxUbG2u3/vz589WlS5dc21mwYIE2btx4w/0BKHooRgBuaPbs2Ro5cqR++OEHHTly5Ka2FRMTo6NHj2r9+vWqUKGCOnfurH379l1z/dDQUM2bN08ZGRm2sQsXLiguLk5hYWF26+7bt0+NGzfWnj17NHfuXO3du1czZsywfbH06dOnr5utdOnSCgkJkY+PjyRp8eLFiouL03fffae33npLTzzxhE6ePClJSk1N1QsvvKCpU6fm2k758uUVFBSU598JgKKDYgTgus6dO6fPP/9cw4YNU1RUlObMmXNT2wsICFBISIjuuOMOTZ8+XRkZGVqxYsU117/77rsVGhqqBQsW2MYWLFigsLAw3XXXXXbrDh8+XB4eHvruu+/UsmVLhYWFqWPHjvr+++91+PBhvfDCCw5l3bVrl1q1aqXGjRurd+/e8vPz0/79+yVJzz33nIYNG5arnAEo3ihGAK7riy++UO3atVWrVi1FR0fr448/VkF9xaK3t7ck6eLFi9ddb8CAAYqJibG9/vjjj9W/f3+7dU6fPq3ly5frySeftG33ipCQEPXp00eff/65Q9kbNmyozZs368yZM0pISFBGRoZq1KihdevWacuWLXrqqafyvC0AxQPFCMB1zZ49W9HR0ZKkBx54QKmpqVq7du1Nbzc9PV0vvviiSpUqpZYtW1533ejoaK1bt04HDx7UwYMHtX79elumK/bs2SNjjOrUqXPVbdSpU0dnzpzRiRMn8pyxQ4cOio6OVpMmTdSvXz998sknKlOmjIYNG6YZM2Zo+vTpqlWrlu677z799ttved4ugKKrtKsDACi6EhMTtXHjRn399deSLl+D06tXL82ePVutWrXK1zZ79+6tUqVKKSMjQ0FBQZo9e7YaNGhw3fcEBQXZTuMZYxQVFaUKFSpcdd2COpp1xfjx4zV+/Hjb6wkTJigyMlLu7u6aOHGitm/friVLlujxxx9XQkJCge4bgPNRjABc0+zZs3Xp0iVVrlzZNmaMkaenpz788EP5+/vLz89P0uWLkQMCAuzen5KSIn9/f7uxd999V5GRkfL393foAuUBAwZoxIgRknTVC55r1Kghi8WiXbt26eGHH861fNeuXSpXrtxNXRS9e/duffbZZ/rll1/08ccfq0WLFgoKClLPnj01YMAAnT17VmXLls339gG4HqfSAFzVpUuX9Omnn+qdd97R1q1bbT/btm1T5cqVNXfuXElSzZo15ebmlutoyb59+5Samqrbb7/dbjwkJEQ1atRwuKA88MADunjxorKystShQ4dcywMDA9WuXTtNmzbN7g42STp27JhiY2PVq1cvWSwWh/Z7hTFGQ4YM0eTJk+Xr66vs7GxlZWVJku1/s7Oz87VtAEUHR4wAXNWSJUt05swZDRw4MNdRn+7du2v27NkaOnSoypYtqyeeeELPPvusSpcurfr16+vQoUN6/vnn1axZM917770FkqdUqVLatWuX7c9X8+GHH+ree+9Vhw4dNHHiREVEROi3337TmDFjdNttt+m1117L9/7//e9/KygoyPbcovvuu0/jx4/Xzz//rKVLl6pu3bq5jpgBKH44YgTgqmbPnm075fVX3bt31+bNm/Xrr79Kkt5//3317dtXzz//vOrVq6d+/fqpQYMGWrx4cb6P0FyNn5+f7dTd1dSsWVObN29WtWrV1LNnT1WvXl2DBw9W69atFR8fr/Lly+drv8nJyXrttdf0wQcf2MaaNm2qZ599VlFRUfriiy/s7poDUHxZTEFfqQgAxdD48eO1cOHCAvsKjwMHDigiIkK//PKL7rzzzgLZJoDCxxEjALDavn27fH19NW3atJvaTseOHVWvXr0CSgXAmThiBAC6/IDIK18ZEhQUdNVTiHl1+PBh2wXgYWFh8vDwKJCMAAofxQgAAMCKU2kAAABWFCMAAAArihEAAIAVxQgAAMCKYgQAAGBFMQIAALCiGAEAAFhRjAAAAKwoRgAAAFb/D60PVy7Nlq5qAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# the normal images have `nan` values because\n", + "# recall is not defined for them so we ignore them\n", + "print(f\"MEAN\\n{aupimo_result.aupimos[labels == 1].mean().item()=}\")\n", + "print(f\"OTHER STATISTICS\\n{stats.describe(aupimo_result.aupimos[labels == 1])}\")\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.hist(aupimo_result.aupimos[labels == 1].numpy(), bins=np.linspace(0, 1, 11), edgecolor=\"black\")\n", + "ax.set_ylabel(\"Count (number of images)\")\n", + "ax.set_xlim(0, 1)\n", + "ax.set_xlabel(\"AUPIMO [%]\")\n", + "ax.xaxis.set_major_formatter(PercentFormatter(1))\n", + "ax.grid()\n", + "ax.set_title(\"AUPIMO distribution\")\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Until here we just reproduded the notebook with the basic usage of AUPIMO." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Selecting Representative Samples for Qualitative Analysis\n", + "\n", + "Instead of cherry picking or inspecting the 92 samples from above, we'll try to choose them smartly.\n", + "\n", + "Our goal here is to select a handful of samples in a meaningful way.\n", + "\n", + "> Notice that a random selection from the distribution above would probably miss the worst cases.\n", + "\n", + "We will summarize this distribution with a boxplot, then select the samples corresponding to the statistics in it." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAADvCAYAAAD2Og4yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0n0lEQVR4nO3dd1hUx/4/8PfSO4giRRFQQbBgAXtNJKIiauJFRRFRExtGjcZrTG4isZdorhpLihpvxBIjJmo0iAV7ReyAqGBFrBQFC/D5/uGP88sGVFAEPb5fz7NP2Jk5M3N2AnnnnNldjYgIiIiIiFRMp6wnQERERPSqMfAQERGR6jHwEBERkeox8BAREZHqMfAQERGR6jHwEBERkeox8BAREZHqMfAQERGR6jHwEBERkeox8BARvYaio6Oh0WgQHR1d1lMhUgUGHnrrLFiwABqNBo0bNy60Pjk5GRqNBt98802h9d988w00Gg2Sk5OVsjZt2kCj0SgPa2trNGzYEEuWLEFeXp7SLiQkBGZmZlr95R/r6upa6HhRUVFKv7/99luB+tOnTyMoKAiVKlWCoaEhHBwc0Lt3b5w+ffp5L4Xi5s2bGDFiBNzd3WFsbIyKFSuiUaNGGDt2LO7du1fkft4UISEhWuulp6cHR0dH9OzZE2fOnCnr6b20TZs2ISwsrKynQfRa0SvrCRCVtvDwcDg7O+PQoUM4d+4cqlevXiL9Vq5cGVOnTgXwJED873//w4ABA3D27FlMmzbtmccaGRnh3LlzOHToEBo1alRgvkZGRnjw4EGB4yIiIhAYGAhra2sMGDAALi4uSE5OxuLFi/Hbb79h1apVeP/995859p07d+Dt7Y2MjAz0798f7u7uuH37Nk6cOIGFCxdiyJAhBUKaGhgaGuKnn34CAOTk5OD8+fNYtGgR/vrrL5w5cwYODg5lPMMXt2nTJsyfP5+hh+hvGHjorZKUlIR9+/YhIiICgwYNQnh4OMaPH18ifVtaWiIoKEh5PmjQINSoUQPfffcdJk6cCH19/aceW61aNeTk5GDlypVagefBgwdYt24d/Pz8sHbtWq1jzp8/jz59+qBq1arYtWsXbGxslLoRI0agZcuW6NOnD06cOIGqVas+dezFixfj0qVL2Lt3L5o1a6ZVl5GRAQMDgyK/Bi/r/v37MDU1LZWx9PT0tNYLAJo0aYJOnTrhzz//xEcffVQq8yCi0sFbWvRWCQ8PR7ly5eDn54d//etfCA8Pf2VjmZiYoEmTJrh//z5u3rz53PaBgYFYvXq11i2wDRs2ICsrC927dy/QfubMmcjKysIPP/ygFXYAoEKFCvj+++9x//59zJgx45njnj9/Hrq6umjSpEmBOgsLCxgZGWmVHTx4EB07dkS5cuVgamoKT09PzJkzR6vN9u3b0bJlS5iamsLKygpdunRBXFycVpuwsDBoNBqcOXMGvXr1Qrly5dCiRQulfvny5fDy8oKxsTGsra3Rs2dPXL58WauPxMREdOvWDXZ2djAyMkLlypXRs2dPpKenP/Ocn8bOzg7AkzD0dxcuXEBAQACsra2Vdf3zzz+V+ri4OBgbGyM4OFjruD179kBXVxdjx45VypydndGpUyds2bIF9erVg5GREWrWrImIiIgizXHNmjXK61KhQgUEBQXh6tWrSn1ISAjmz58PAFq37Yjedgw89FYJDw/HBx98AAMDAwQGBiIxMRGHDx9+ZeNduHABurq6sLKyem7bXr16ISUlRWuT6ooVK9C2bVtUrFixQPsNGzbA2dkZLVu2LLS/Vq1awdnZWes/zIVxcnJCbm4ufvnll+fOMSoqCq1atcKZM2cwYsQIzJo1C++88w42btyotNm6dSt8fX1x48YNhIWFYdSoUdi3bx+aN2+ute8pX0BAALKysjBlyhTlqsrkyZMRHBwMV1dXzJ49GyNHjsS2bdvQqlUrpKWlAQAePXoEX19fHDhwAB9//DHmz5+PgQMH4sKFC0qb57l16xZu3bqF1NRU7N+/H5988gnKly+PTp06KW1SU1PRrFkzREZGYujQoZg8eTIePHiAzp07Y926dQAADw8PTJw4Eb/88gvWr18P4MnVqpCQELi7u2PChAla4yYmJqJHjx7o0KEDpk6dCj09PQQEBCAqKuqZ8/3555/RvXt36OrqYurUqfjoo48QERGBFi1aKOc8aNAgvPfeewCAX375RXkQvfWE6C1x5MgRASBRUVEiIpKXlyeVK1eWESNGaLVLSkoSADJz5sxC+5k5c6YAkKSkJKWsdevW4u7uLjdv3pSbN29KXFycDB8+XACIv7+/0q5v375iamqq1V/r1q2lVq1aIiLi7e0tAwYMEBGRu3fvioGBgSxbtkx27NghAGTNmjUiIpKWliYApEuXLs88586dOwsAycjIeGqb69evi42NjQAQd3d3GTx4sKxYsULS0tK02uXk5IiLi4s4OTnJ3bt3tery8vKUn+vVqycVK1aU27dvK2XHjx8XHR0dCQ4OVsrGjx8vACQwMFCrr+TkZNHV1ZXJkydrlZ88eVL09PSU8tjYWK3XpDj69u0rAAo8KlWqJDExMVptR44cKQBk9+7dSllmZqa4uLiIs7Oz5ObmiohIbm6utGjRQmxtbeXWrVsSGhoqenp6cvjwYa3+nJycBICsXbtWKUtPTxd7e3upX7++Upa/5jt27BARkUePHknFihWldu3akp2drbTbuHGjAJCvvvpKKQsNDRX+eSfSxis89NYIDw+Hra0t3nnnHQBPLvf36NEDq1atQm5u7kv3Hx8fDxsbG9jY2MDDwwPz5s2Dn58flixZUuQ+evXqhYiICDx69Ai//fYbdHV1C910nJmZCQAwNzd/Zn/59RkZGU9tY2tri+PHj2Pw4MG4e/cuFi1ahF69eqFixYqYOHEiRAQAEBsbi6SkJIwcObLAFav8WyYpKSk4duwYQkJCYG1trdR7enrivffew6ZNmwqMP3jwYK3nERERyMvLQ/fu3ZUrMLdu3YKdnR1cXV2xY8cOAE/2TAFAZGQksrKynvk6FMbIyAhRUVGIiopCZGQkvv/+e5iZmaFjx444e/as0m7Tpk1o1KiR1u02MzMzDBw4EMnJycq7unR0dPDzzz/j3r176NChAxYsWIBx48bB29u7wNgODg5a62phYYHg4GDExsbi+vXrhc73yJEjuHHjBoYOHap1m9HPzw/u7u7PvZJH9LZj4KG3Qm5uLlatWoV33nkHSUlJOHfuHM6dO4fGjRsjNTUV27ZtK3af/9wX4ezsjKioKGzduhV79uzB9evXsXHjRlSoUKHIfebvP9m8eTPCw8PRqVOnQkNNfll+8HmaogYje3t7LFy4ECkpKUhISMDcuXNhY2ODr776CosXLwbwZK8PANSuXfup/Vy8eBEAUKNGjQJ1Hh4euHXrFu7fv69V7uLiovU8MTERIgJXV1clQOY/4uLicOPGDeW4UaNG4aeffkKFChXg6+uL+fPnF3n/jq6uLnx8fODj44N27dph4MCB2Lp1K9LT0zFu3Ditc3ra+fz9nIEnm8/DwsJw+PBh1KpVC19++WWhY1evXr3Avz9ubm4AUOhtv7+PU9hc3N3dteZBRAXxXVr0Vti+fTtSUlKwatUqrFq1qkB9eHg42rVrBwDK/z1nZ2cX2lf+1YR/buY1NTWFj4/PS83T3t4ebdq0waxZs7B3794C78zKZ2lpCXt7e5w4ceKZ/Z04cQKVKlWChYVFkcbXaDRwc3ODm5sb/Pz84OrqivDwcHz44YfFPpeiMjY21nqel5cHjUaDzZs3Q1dXt0D7v79FftasWQgJCcEff/yBLVu2YPjw4Zg6dSoOHDiAypUrF3sulStXRo0aNbBr167in8j/s2XLFgDAtWvXcPv2bWUjNBGVLV7hobdCeHg4KlasiDVr1hR4BAYGYt26dUrAsbGxgYmJCRISEgrtKyEhASYmJsW6clMcvXr1wu7du2FhYYGOHTs+tV2nTp2QlJSEPXv2FFq/e/duJCcna23ALY6qVauiXLlySElJAfDk6gUAnDp16qnHODk5AUChr118fDwqVKjw3LedV6tWDSICFxcX5QrM3x//fDdZnTp18J///Ae7du3C7t27cfXqVSxatKhY5/p3OTk5Wh+26OTk9NTzya/Pt2jRIkRFRWHy5Ml49OgRBg0aVOgY586dU24V5su/jebs7FzoMc96bRMSErTmwXdlERWibLcQEb16WVlZYm5uLv379y+0fu/evQJAVq1apZR17dpVLCws5OLFi1ptL168KObm5tK1a1et8r9vPH6W521aFnmyIXn8+PGyYsUKpeyfm5ZFRM6ePSvGxsZSs2ZNuXXrllaft2/flpo1a4qJiYmcO3fumXM6cOCA3Lt3r0D5wYMHBYB07txZRJ5syi3qpmVbW1utNidPnnzqpuWbN29q9XXu3DnR1dWVXr16afWbP07+uaanp8vjx4+16jMyMkRHR0c+/fTTZ55zYesgIpKQkCB6enrSuHFjpSx/0/K+ffuUsnv37knVqlW1Ni1fuHBBzMzMpFu3biIismjRIgEgy5Yt0xrjWZuW69Wrp5Q9bdOyp6enPHjwQGm3adOmApuWx44dKwAKrBPR24y3tEj11q9fj8zMTHTu3LnQ+iZNmsDGxgbh4eHo0aMHAGDKlClo0qQJGjRogIEDB8LZ2RnJycn44YcfoNFoMGXKlFc2X0tLyyJ9Qq6rqyuWLVuG3r17o06dOgU+afnWrVtYuXKlcmXmaX755ReEh4fj/fffh5eXFwwMDBAXF4clS5bAyMgIn3/+OYAnm3IXLlwIf39/1KtXD/369YO9vT3i4+Nx+vRpREZGAnjy+UAdOnRA06ZNMWDAAGRnZ2PevHlFPq9q1aph0qRJGDduHJKTk9G1a1eYm5sjKSkJ69atw8CBA/Hpp59i+/btGDZsGAICAuDm5oacnBz88ssv0NXVRbdu3Z47Tk5ODpYvXw7gyW205ORkLFq0CHl5eVofRvnZZ59h5cqV6NChA4YPHw5ra2ssW7YMSUlJWLt2LXR0dCAi6N+/P4yNjbFw4UIAT94evnbtWowYMQI+Pj5an9zs5uaGAQMG4PDhw7C1tcWSJUuQmpqKpUuXPnW++vr6mD59Ovr164fWrVsjMDAQqampmDNnDpydnfHJJ58obb28vAAAw4cPh6+vL3R1ddGzZ8/nviZEqlbWiYvoVfP39xcjIyO5f//+U9uEhISIvr6+1pWSuLg46dGjh1SsWFH09PSkYsWK0rNnT4mLiytwfEle4SlMYVd48p04cUICAwPF3t5e9PX1xc7OTgIDA+XkyZPPnU/+8WPGjJEGDRqItbW16Onpib29vQQEBMjRo0cLtN+zZ4+89957Ym5uLqampuLp6Snz5s3TarN161Zp3ry5GBsbi4WFhfj7+8uZM2e02jztCk++tWvXSosWLcTU1FRMTU3F3d1dQkNDJSEhQUSeXFHp37+/VKtWTYyMjMTa2lreeecd2bp163PPubC3pVtYWEjbtm0LPf78+fPyr3/9S6ysrMTIyEgaNWokGzduVOrnzJlT4KqNiMilS5fEwsJCOnbsqJQ5OTmJn5+fREZGiqenpxgaGoq7u3uBtf3nFZ58q1evlvr164uhoaFYW1tL79695cqVK1ptcnJy5OOPPxYbGxvRaDR8izqRiGhE/nEjmYiIXhlnZ2fUrl1b68MaiejV46ZlIiIiUj0GHiIiIlI9Bh4iIiJSPe7hISIiItXjFR4iIiJSPQYeIiIiUr0if/BgXl4erl27BnNzc35sOREREb1SIoLMzEw4ODhAR+flr88UOfBcu3YNjo6OLz0gERERUVFdvnz5hb4M+J+KHHjMzc2VgYv6zctERERELyIjIwOOjo5K/nhZRQ48+bexLCwsGHiIiIioVJTUNhpuWiYiIiLVY+AhIiIi1WPgISIiItVj4CEiIiLVY+AhIiIi1XvrAk9ycjI0Gg2OHTtW1lNRxMfHo0mTJjAyMkK9evUKbdOmTRuMHDmyVOdFRESkFqUeeEJCQqDRaDBt2jSt8t9///2t/QTn8ePHw9TUFAkJCdi2bVuhbSIiIjBx4sRSnlnZ2bZtG5o1awZzc3PY2dlh7NixyMnJUeqjo6PRpUsX2Nvbw9TUFPXq1UN4eHgZzpiIiF5nZXKFx8jICNOnT8fdu3fLYvhX4tGjRy987Pnz59GiRQs4OTmhfPnyhbaxtrYusQ9fet0dP34cHTt2RPv27REbG4vVq1dj/fr1+Oyzz5Q2+/btg6enJ9auXYsTJ06gX79+CA4OxsaNG8tw5kRE9Loqk8Dj4+MDOzs7TJ069altwsLCCtze+e9//wtnZ2fleUhICLp27YopU6bA1tYWVlZWmDBhAnJycjBmzBhYW1ujcuXKWLp0aYH+4+Pj0axZMxgZGaF27drYuXOnVv2pU6fQoUMHmJmZwdbWFn369MGtW7eU+jZt2mDYsGEYOXIkKlSoAF9f30LPIy8vDxMmTEDlypVhaGiIevXq4a+//lLqNRoNYmJiMGHCBGg0GoSFhRXazz9vaTk7O2PSpEkIDg6GmZkZnJycsH79ety8eRNdunSBmZkZPD09ceTIEeWY27dvIzAwEJUqVYKJiQnq1KmDlStXao2TmZmJ3r17w9TUFPb29vj2228LjP3w4UN8+umnqFSpEkxNTdG4cWNER0cr9RcvXoS/vz/KlSsHU1NT1KpVC5s2bSr0vAqzevVqeHp64quvvkL16tXRunVrzJgxA/Pnz0dmZiYA4PPPP8fEiRPRrFkzVKtWDSNGjED79u0RERFR5HGIiOjtUSaBR1dXF1OmTMG8efNw5cqVl+pr+/btuHbtGnbt2oXZs2dj/Pjx6NSpE8qVK4eDBw9i8ODBGDRoUIFxxowZg9GjRyM2NhZNmzaFv78/bt++DQBIS0vDu+++i/r16+PIkSP466+/kJqaiu7du2v1sWzZMhgYGGDv3r1YtGhRofObM2cOZs2ahW+++QYnTpyAr68vOnfujMTERABASkoKatWqhdGjRyMlJQWffvppkc/922+/RfPmzREbGws/Pz/06dMHwcHBCAoKwtGjR1GtWjUEBwdDRAAADx48gJeXF/7880+cOnUKAwcORJ8+fXDo0CGlz1GjRmHv3r1Yv349oqKisHv3bhw9elRr3GHDhmH//v1YtWoVTpw4gYCAALRv3145p9DQUDx8+BC7du3CyZMnMX36dJiZmSnHOzs7PzXYAU8ClZGRkVaZsbExHjx4gJiYmKcel56eDmtr6yK/fkRE9BaRIkpPTxcAkp6eXtRDCtW3b1/p0qWLiIg0adJE+vfvLyIi69atk79PZ/z48VK3bl2tY7/99ltxcnLS6svJyUlyc3OVsho1akjLli2V5zk5OWJqaiorV64UEZGkpCQBINOmTVPaPH78WCpXrizTp08XEZGJEydKu3bttMa+fPmyAJCEhAQREWndurXUr1//uefr4OAgkydP1ipr2LChDB06VHlet25dGT9+/DP7ad26tYwYMUJ57uTkJEFBQcrzlJQUASBffvmlUrZ//34BICkpKU/t18/PT0aPHi0iIhkZGaKvry9r1qxR6tPS0sTExEQZ++LFi6KrqytXr17V6qdt27Yybtw4ERGpU6eOhIWFPXXMd999V+bNm/fU+sjISNHR0ZEVK1ZITk6OXLlyRVq2bCkAZMWKFYUes3r1ajEwMJBTp049tV8iInpzlFTuyFfk79J6FaZPn4533323WFc1/qlWrVpaXxtva2uL2rVrK891dXVRvnx53LhxQ+u4pk2bKj/r6enB29sbcXFxAJ7sIdmxY4fWVYl858+fh5ubGwDAy8vrmXPLyMjAtWvX0Lx5c63y5s2b4/jx40U8w6fz9PRUfra1tQUA1KlTp0DZjRs3YGdnh9zcXEyZMgW//vorrl69ikePHuHhw4cwMTEBAFy4cAGPHz9Go0aNlD4sLS1Ro0YN5fnJkyeRm5urvAb5Hj58qOw/Gj58OIYMGYItW7bAx8cH3bp105rr0zZm52vXrh1mzpyJwYMHo0+fPjA0NMSXX36J3bt3a611vh07dqBfv3748ccfUatWrWe/aERE9FYq07elt2rVCr6+vhg3blyBOh0dHeVWTL7Hjx8XaKevr6/1XKPRFFqWl5dX5Hndu3cP/v7+OHbsmNYjMTERrVq1UtqZmpoWuc9X4e/nmf8Ot8LK8s995syZmDNnDsaOHYsdO3bg2LFj8PX1LdaG63v37kFXVxcxMTFar01cXBzmzJkDAPjwww9x4cIF9OnTBydPnoS3tzfmzZtXrHMbNWoU0tLScOnSJdy6dQtdunQBAFStWlWr3c6dO+Hv749vv/0WwcHBxRqDiIjeHmX+OTzTpk3Dhg0bsH//fq1yGxsbXL9+XSv0lORn5xw4cED5OScnBzExMfDw8AAANGjQAKdPn4azszOqV6+u9ShOyLGwsICDgwP27t2rVb53717UrFmzZE6kGPbu3YsuXbogKCgIdevWRdWqVXH27FmlvmrVqtDX18fhw4eVsvT0dK029evXR25uLm7cuFHgtbGzs1PaOTo6YvDgwYiIiMDo0aPx448/Fnu+Go0GDg4OMDY2xsqVK+Ho6IgGDRoo9dHR0fDz88P06dMxcODAYvdPRERvjzIPPHXq1EHv3r0xd+5crfI2bdrg5s2bmDFjBs6fP4/58+dj8+bNJTbu/PnzsW7dOsTHxyM0NBR3795F//79ATzZdHvnzh0EBgbi8OHDOH/+PCIjI9GvXz/k5uYWa5wxY8Zg+vTpWL16NRISEvDZZ5/h2LFjGDFiRImdS1G5uroiKioK+/btQ1xcHAYNGoTU1FSl3tzcHH379sWYMWOwY8cOnD59GgMGDICOjo5ytcjNzQ29e/dGcHAwIiIikJSUhEOHDmHq1Kn4888/AQAjR45EZGQkkpKScPToUezYsUMJkwDQtm1bfPfdd8+c68yZM3Hy5EmcPn0aEydOxLRp0zB37lzo6uoCeHIby8/PD8OHD0e3bt1w/fp1XL9+HXfu3Cnpl42IiFSgzAMPAEyYMKHALScPDw8sWLAA8+fPR926dXHo0KGX2uvzT9OmTcO0adNQt25d7NmzB+vXr0eFChUAQLkqk5ubi3bt2qFOnToYOXIkrKysCt1D8izDhw/HqFGjMHr0aNSpUwd//fUX1q9fD1dX1xI7l6L6z3/+gwYNGsDX1xdt2rSBnZ0dunbtqtVm9uzZaNq0KTp16gQfHx80b94cHh4eWu+aWrp0KYKDgzF69GjUqFEDXbt2xeHDh1GlShUAQG5uLkJDQ+Hh4YH27dvDzc0NCxYsUI4/f/681lv8C7N582a0bNkS3t7e+PPPP/HHH39ozXXZsmXIysrC1KlTYW9vrzw++OCDl3+hiIhIdTTyz40yT5GRkQFLS0ukp6fDwsLiVc+LXhP3799HpUqVMGvWLAwYMKCsp0NERG+Jks4dZfouLXr9xMbGIj4+Ho0aNUJ6ejomTJgAAMqmYSIiojcRAw8V8M033yAhIQEGBgbw8vLC7t27ldt9REREbyIGHtJSv379Z36aMRER0Zvotdi0TERERPQqMfAQERGR6jHwEBERkeox8BAREZHqMfAQERGR6jHwEBERkeox8BAREZHqMfAQERGR6jHwEBERkeox8BAREZHqMfAQERGR6jHwEBERkeox8BAREZHqMfAQERGR6jHwEBERkeox8BAREZHqMfAQERGR6jHwEBERkeox8BAREZHqMfAQERGR6jHwEBERkeox8BAREZHq6ZX1BIiInicxMRGZmZllPQ0iKgHm5uZwdXUt9XEZeIjotZaYmAg3N7eyngZRqbEz02CQlwG+j3mE6/ekrKfzSpw9e7bUQw8DDxG91vKv7CxfvhweHh5lPBuiV8847Sw8dg1Cj69+RraVusJ+XFwcgoKCyuSKLQMPEb0RPDw80KBBg7KeBtGrd00H2AV4uLsDDvXKejaqwU3LREREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6JR54srKycPToUWRlZZV010RERKQCcXFxpZ4TSjzwxMfHw8vLC/Hx8SXdNREREalAUFBQqecE3tIiIiIi1WPgISIiItVj4CEiIiLVY+AhIiIi1WPgISIiItVj4CEiIiLVY+AhIiIi1WPgISIiItVj4CEiIiLVY+AhIiIi1WPgISIiItVj4CEiIiLVY+AhIiIi1WPgISIiItXTK+kOs7OzAQBxcXEl3TURvYXy/5bk/20hojfX33+PS/t3usQDT3JyMgAgKCiopLsmordYcnIymjdvXtbTIKKXkJ8R8n8uzd/pEg88zs7OAIDly5fDw8OjpLsnordMXFwcgoKClL8tRPTm+vvvcWn/Tpd44DE2NgYAeHh4oEGDBiXdPRG9pfL/thDRm+vvv8el/TvNTctERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkeiUeeNzd3RETEwN3d/eS7pqIiIhUYPny5aWeE/RKukMTExM0aNCgpLslIiIilfDw8ICJiUmpjslbWkRERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHol/uWhREQlKSsrCwBw9OjRMp4JUekwTjsLDwBx8fHIvp5X1tMpUXFxcWU2NgMPEb3W4uPjAQAfffRRGc+EqHTYmWkwyMsA38/qhev3pKyn80qYm5uX+pgMPET0WuvatSsAwN3dHSYmJmU7GaJS1LmsJ/CKmJubw9XVtdTH1YhIkeJjRkYGLC0tkZ6eDgsLi1c9LyIiInqLlXTu4KZlIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPQYeIiIiUj0GHiIiIlI9Bh4iIiJSPb2iNhQRAEBGRsYrmwwRERER8P/zRn7+eFlFDjyZmZkAAEdHxxIZmIiIiOh5MjMzYWlp+dL9aKSI0SkvLw/Xrl2Dubk5NBrNU9tlZGTA0dERly9fhoWFxUtPkEoW1+f1xzV6vXF9Xm9cn9dfUddIRJCZmQkHBwfo6Lz8DpwiX+HR0dFB5cqVi9yxhYUF/2V7jXF9Xn9co9cb1+f1xvV5/RVljUriyk4+blomIiIi1WPgISIiItUr8cBjaGiI8ePHw9DQsKS7phLA9Xn9cY1eb1yf1xvX5/VXVmtU5E3LRERERG8q3tIiIiIi1WPgISIiItVj4CEiIiLVY+AhIiIi1XuhwDN//nw4OzvDyMgIjRs3xqFDh5S6UaNGwdraGo6OjggPD9c6bs2aNfD393+5GZNi6tSpaNiwIczNzVGxYkV07doVCQkJWm0ePHiA0NBQlC9fHmZmZujWrRtSU1OV+jt37sDf3x9mZmaoX78+YmNjtY4PDQ3FrFmzSuV81G7atGnQaDQYOXKkUsb1KXtXr15FUFAQypcvD2NjY9SpUwdHjhxR6kUEX331Fezt7WFsbAwfHx8kJiYq9Q8fPkSfPn1gYWEBNzc3bN26Vav/mTNn4uOPPy6181GT3NxcfPnll3BxcYGxsTGqVauGiRMnan23Eten9OzatQv+/v5wcHCARqPB77//rlX/vLUAnvxN6927NywsLGBlZYUBAwbg3r17Sn1ycjJatWoFU1NTtGrVCsnJyVrHd+rUCWvXrn2xE5BiWrVqlRgYGMiSJUvk9OnT8tFHH4mVlZWkpqbK+vXrxdbWVg4fPiwrVqwQIyMjuXnzpoiIpKWliaurq1y8eLG4Q9JT+Pr6ytKlS+XUqVNy7Ngx6dixo1SpUkXu3buntBk8eLA4OjrKtm3b5MiRI9KkSRNp1qyZUj9q1Chp3bq1JCQkyMiRI8XLy0up279/v3h5eUlOTk6pnpcaHTp0SJydncXT01NGjBihlHN9ytadO3fEyclJQkJC5ODBg3LhwgWJjIyUc+fOKW2mTZsmlpaW8vvvv8vx48elc+fO4uLiItnZ2SIiMnfuXPHw8JBTp07JzJkzxcbGRvLy8kRE5MKFC+Lq6irp6ellcn5vusmTJ0v58uVl48aNkpSUJGvWrBEzMzOZM2eO0obrU3o2bdokX3zxhURERAgAWbdunVb989ZCRKR9+/ZSt25dOXDggOzevVuqV68ugYGBSv0HH3wgPXv2lLNnz0r37t2lW7duSt2qVavE39//hedf7MDTqFEjCQ0NVZ7n5uaKg4ODTJ06VaZPny49evRQ6ipWrCiHDh0SEZGBAwfK7NmzX3ii9Hw3btwQALJz504ReRIy9fX1Zc2aNUqbuLg4ASD79+8XEZEOHTrIwoULRUTkzJkzYmJiIiIijx49krp168rhw4dL+SzUJzMzU1xdXSUqKkpat26tBB6uT9kbO3astGjR4qn1eXl5YmdnJzNnzlTK0tLSxNDQUFauXCkiIkOGDJGxY8eKiEhWVpYAkBs3bojIk/8piYiIeIVnoG5+fn7Sv39/rbIPPvhAevfuLSJcn7L0z8BTlLU4c+aMAND6u7V582bRaDRy9epVERHx8PCQzZs3i8iTgFWzZk0REbl7965Ur15dLl269MJzLtYtrUePHiEmJgY+Pj5KmY6ODnx8fLB//37UrVsXR44cwd27dxETE4Ps7GxUr14de/bswdGjRzF8+PAXuwxFRZKeng4AsLa2BgDExMTg8ePHWuvl7u6OKlWqYP/+/QCAunXrYvv27cjJyUFkZCQ8PT0BADNmzECbNm3g7e1dymehPqGhofDz89NaB4Dr8zpYv349vL29ERAQgIoVK6J+/fr48ccflfqkpCRcv35da40sLS3RuHFjrTXas2cPsrOzERkZCXt7e1SoUAHh4eEwMjLC+++/X+rnpRbNmjXDtm3bcPbsWQDA8ePHsWfPHnTo0AEA1+d1UpS12L9/P6ysrLT+bvn4+EBHRwcHDx4E8GS9tm7diry8PGzZskX5mzdmzBiEhobC0dHxxSdZnHR09epVASD79u3TKh8zZow0atRIRETGjx8v1apVk9q1a0tERIQ8fPhQateuLUeOHJF58+aJm5ubNGvWTE6dOvXCKY0Kys3NFT8/P2nevLlSFh4eLgYGBgXaNmzYUP7973+LyJMEHhgYKFWqVJFWrVrJ6dOn5ezZs+Lq6iq3bt2SQYMGiYuLiwQEBEhaWlqpnY9arFy5UmrXrq1c0v37FR6uT9kzNDQUQ0NDGTdunBw9elS+//57MTIykp9//llERPbu3SsA5Nq1a1rHBQQESPfu3UXkydW2oUOHirOzs3h7e8vu3bvl9u3bUrVqVbl06ZJ88cUXUq1aNWnXrp1cuXKl1M/xTZabmytjx44VjUYjenp6otFoZMqUKUo916fs4B9XeIqyFpMnTxY3N7cCfdnY2MiCBQtEROTKlSvi5+cnjo6O4ufnJ1euXJGdO3eKt7e33L59WwICAsTFxUUGDRokDx8+LNaci/xt6UUVFhaGsLAw5fnXX38NHx8f6OvrY9KkSTh58iQ2btyI4OBgxMTElPTwb63Q0FCcOnUKe/bsKdZxlpaWWLFihVbZu+++i5kzZyI8PBwXLlxAQkICPvroI0yYMIEbZIvh8uXLGDFiBKKiomBkZPRCfXB9Xq28vDx4e3tjypQpAID69evj1KlTWLRoEfr27VukPvT19TF//nytsn79+mH48OGIjY3F77//juPHj2PGjBkYPnz4i2+4fAv9+uuvCA8Px4oVK1CrVi0cO3YMI0eOhIODA9dHpSpVqoSNGzcqzx8+fAhfX18sW7YMkyZNgrm5ORISEtC+fXt8//33xdpwXqxbWhUqVICurq7Wu0gAIDU1FXZ2dgXax8fHY/ny5Zg4cSKio6PRqlUr2NjYoHv37jh69CgyMzOLMzw9xbBhw7Bx40bs2LEDlStXVsrt7Ozw6NEjpKWlabV/2noBwNKlS2FlZYUuXbogOjoaXbt2hb6+PgICAhAdHf0Kz0J9YmJicOPGDTRo0AB6enrQ09PDzp07MXfuXOjp6cHW1pbrU8bs7e1Rs2ZNrTIPDw9cunQJAJR1KOrfPADYsWMHTp8+jWHDhiE6OhodO3aEqakpunfvzjUqpjFjxuCzzz5Dz549UadOHfTp0weffPIJpk6dCoDr8zopylrY2dnhxo0bWvU5OTm4c+fOU9drypQpaNeuHby8vBAdHY1u3bpBX18fH3zwQbHXq1iBx8DAAF5eXti2bZtSlpeXh23btqFp06ZabUUEgwYNwuzZs2FmZobc3Fw8fvwYAJR/5ubmFmuypE1EMGzYMKxbtw7bt2+Hi4uLVr2Xlxf09fW11ishIQGXLl0qsF4AcPPmTUyYMAHz5s0DgAJrxvUqnrZt2+LkyZM4duyY8vD29kbv3r2Vn7k+Zat58+YFPsrh7NmzcHJyAgC4uLjAzs5Oa40yMjJw8ODBQtco/2MGvv/+e+jq6nKNXlJWVhZ0dLT/M6Wrq4u8vDwAXJ/XSVHWomnTpkhLS9O6u7N9+3bk5eWhcePGBfqMi4vDihUrMHHiRAAl8DevWDfA5MnbwgwNDeXnn3+WM2fOyMCBA8XKykquX7+u1e6HH37QejvZwYMHxcLCQvbv3y9fffWVsvOaXtyQIUPE0tJSoqOjJSUlRXlkZWUpbQYPHixVqlSR7du3y5EjR6Rp06bStGnTQvvr1auXzJs3T3k+ffp08fLykjNnzkiHDh1k6NChr/yc1O7ve3hEuD5l7dChQ6KnpyeTJ0+WxMRECQ8PFxMTE1m+fLnSZtq0aWJlZSV//PGHnDhxQrp06VLgrbb5Pv/8cxk9erTyfPXq1VKlShU5fvy4DBgwQDp27Fgq56UWffv2lUqVKilvS4+IiJAKFSooe9xEuD6lKTMzU2JjYyU2NlYAyOzZsyU2Nlb5uJmirEX79u2lfv36cvDgQdmzZ4+4urpqvS09X15enrRo0UI2bNiglA0ZMkT8/PzkzJkzUr9+fZkxY0ax5l/swCMiMm/ePKlSpYoYGBhIo0aN5MCBA1r1169fFycnJ+VtZvm+/vprsba2Fnd3dzl48OCLDE1/A6DQx9KlS5U22dnZMnToUClXrpyYmJjI+++/LykpKQX6+uuvv6RRo0aSm5urlN2/f18CAgLE3Nxc2rZtK6mpqaVxWqr2z8DD9Sl7GzZskNq1a4uhoaG4u7vLDz/8oFWfl5cnX375pdja2oqhoaG0bdtWEhISCvRz8uRJqV69utbnYOXm5sqQIUPEwsJCGjZsKImJia/8fNQkIyNDRowYIVWqVBEjIyOpWrWqfPHFF1qbVbk+pWfHjh2F/jenb9++IlK0tbh9+7YEBgaKmZmZWFhYSL9+/SQzM7PAWIsWLdK6aCIikpqaKm3bthVzc3MJCAiQ+/fvF2v+GpG/fWQlERERkQrxu7SIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIjojREWFgaNRgONRoP//ve/L9VXmzZtlL6OHTtWIvMjotcXAw+RSuzfvx+6urrw8/MrUBcdHQ2NRlPgm9kBwNnZWSs85IcAjUYDS0tLNG/eHNu3b1fqQ0JC0LVrV63nGo0GgwcPLtB3aGgoNBoNQkJCtMovX76M/v37w8HBAQYGBnBycsKIESNw+/bt555nrVq1kJKSgoEDByplo0aNgrW1NRwdHREeHq7Vfs2aNfD39y/QT0REBA4dOvTc8YhIHRh4iFRi8eLF+Pjjj7Fr1y5cu3btpfpaunQpUlJSsHfvXlSoUAGdOnXChQsXntre0dERq1atQnZ2tlL24MEDrFixAlWqVNFqe+HCBXh7eyMxMRErV67EuXPnsGjRImzbtg1NmzbFnTt3njk3PT092NnZwcTEBACwYcMGrFixAlu2bMGMGTPw4Ycf4tatWwCA9PR0fPHFF5g/f36BfqytrWFjY1Pk14SI3mwMPEQqcO/ePaxevRpDhgyBn58ffv7555fqz8rKCnZ2dqhduzYWLlyI7OxsREVFPbV9gwYN4OjoiIiICKUsIiICVapUQf369bXahoaGwsDAAFu2bEHr1q1RpUoVdOjQAVu3bsXVq1fxxRdfFGuucXFxaNOmDby9vREYGAgLCwskJSUBAP79739jyJAhBUIXEb19GHiIVODXX3+Fu7s7atSogaCgICxZsgQl9b3AxsbGAIBHjx49s13//v2xdOlS5fmSJUvQr18/rTZ37txBZGQkhg4dqvSbz87ODr1798bq1auLNfe6deviyJEjuHv3LmJiYpCdnY3q1atjz549OHr0KIYPH17kvohIvRh4iFRg8eLFCAoKAgC0b98e6enp2Llz50v3m5WVhf/85z/Q1dVF69atn9k2KCgIe/bswcWLF3Hx4kXs3btXmVO+xMREiAg8PDwK7cPDwwN3797FzZs3izxHX19fBAUFoWHDhggJCcGyZctgamqKIUOGYNGiRVi4cCFq1KiB5s2b4/Tp00Xul4jURa+sJ0BELychIQGHDh3CunXrADzZ49KjRw8sXrwYbdq0eaE+AwMDoauri+zsbNjY2GDx4sXw9PR85jE2NjbK7TQRgZ+fHypUqFBo25K6+pQvLCwMYWFhyvOvv/4aPj4+0NfXx6RJk3Dy5Els3LgRwcHBiImJKdGxiejNwMBD9IZbvHgxcnJy4ODgoJSJCAwNDfHdd9/B0tISFhYWAJ5s4rWystI6Pi0tDZaWllpl3377LXx8fGBpaVmsjb39+/fHsGHDAKDQjcLVq1eHRqNBXFwc3n///QL1cXFxKFeu3EttJo6Pj8fy5csRGxuLJUuWoFWrVrCxsUH37t3Rv39/ZGZmwtzc/IX7J6I3E29pEb3BcnJy8L///Q+zZs3CsWPHlMfx48fh4OCAlStXAgBcXV2ho6NT4OrGhQsXkJ6eDjc3N61yOzs7VK9evdjBo3379nj06BEeP34MX1/fAvXly5fHe++9hwULFmi9owsArl+/jvDwcPTo0QMajaZY4+YTEQwaNAizZ8+GmZkZcnNz8fjxYwBQ/pmbm/tCfRPRm41XeIjeYBs3bsTdu3cxYMCAAldpunXrhsWLF2Pw4MEwNzfHhx9+iNGjR0NPTw916tTB5cuXMXbsWDRp0gTNmjUrkfno6uoiLi5O+bkw3333HZo1awZfX19MmjQJLi4uOH36NMaMGYNKlSph8uTJLzz+Tz/9BBsbG+Vzd5o3b46wsDAcOHAAmzdvRs2aNQtc4SKitwOv8BC9wRYvXqzcevqnbt264ciRIzhx4gQAYM6cOejbty/Gjh2LWrVqISQkBJ6entiwYcMLX1EpjIWFhXILrTCurq44cuQIqlatiu7du6NatWoYOHAg3nnnHezfvx/W1tYvNG5qaiomT56MuXPnKmWNGjXC6NGj4efnh19//VXrXWRE9HbRSEnvHiQiekXCwsLw+++/l9hXQSQnJ8PFxQWxsbGoV69eifRJRK8nXuEhojfKyZMnYWZmhgULFrxUPx06dECtWrVKaFZE9LrjFR4iemPcuXNH+eoJGxubQm/lFdXVq1eVjdNVqlSBgYFBicyRiF5PDDxERESkerylRURERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESq93/Jtq5JqKbqVQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(7, 2))\n", + "boxplot_data = ax.boxplot(\n", + " aupimo_result.aupimos[labels == 1].numpy(),\n", + " vert=False,\n", + " widths=0.4,\n", + ")\n", + "_ = ax.set_yticks([])\n", + "ax.set_xlim(0 - (eps := 2e-2), 1 + eps)\n", + "ax.xaxis.set_major_formatter(PercentFormatter(1))\n", + "ax.set_xlabel(\"AUPIMO [%]\")\n", + "ax.set_title(\"AUPIMO Scores Boxplot\")\n", + "num_images = (labels == 1).sum().item()\n", + "ax.annotate(\n", + " text=f\"Number of images: {num_images}\",\n", + " xy=(0.03, 0.95),\n", + " xycoords=\"axes fraction\",\n", + " xytext=(0, 0),\n", + " textcoords=\"offset points\",\n", + " annotation_clip=False,\n", + " verticalalignment=\"top\",\n", + ")\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To get the values in the boxplot (e.g., whiskers, quartiles, etc.), we're going to use `matplotlib`'s internal function `mpl.cbook.boxplot_stats()`." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys(['mean', 'iqr', 'cilo', 'cihi', 'whishi', 'whislo', 'fliers', 'q1', 'med', 'q3'])\n" + ] + } + ], + "source": [ + "boxplot_data = mpl.cbook.boxplot_stats(aupimo_result.aupimos[labels == 1].numpy())[0]\n", + "print(boxplot_data.keys())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll select 5 of those and find images in the dataset that match them." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " statistic value image_index\n", + "0 whislo 0.00 65\n", + "1 q1 0.53 58\n", + "2 med 0.89 63\n", + "3 q3 1.00 22\n", + "4 whishi 1.00 0\n" + ] + } + ], + "source": [ + "image_selection = []\n", + "\n", + "for key in [\"whislo\", \"q1\", \"med\", \"q3\", \"whishi\"]:\n", + " value = boxplot_data[key]\n", + " # find the image that is closest to the value of the statistic\n", + " # `[labels == 1]` is not used here so that the image's\n", + " # indexes are the same as the ones in the dataset\n", + " # we use `sort()` -- instead of `argmin()` -- so that\n", + " # the `nan`s are not considered (they are at the end)\n", + " closest_image_index = (aupimo_result.aupimos - value).abs().argsort()[0]\n", + " image_selection.append({\"statistic\": key, \"value\": value, \"image_index\": closest_image_index.item()})\n", + "\n", + "image_selection = pd.DataFrame(image_selection)\n", + "print(image_selection)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that they are sorted from the worst to the best AUPIMO score." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualizing the Representative Samples" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's visualize what the heatmaps of these samples." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# will be used to normalize the anomaly maps to fit a colormap\n", + "global_vmin, global_vmax = torch.quantile(anomaly_maps, torch.tensor([0.02, 0.98]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, axes = plt.subplots(2, 5, figsize=(16, 7), layout=\"constrained\")\n", + "\n", + "for ax_column, (_, row) in zip(axes.T, image_selection.iterrows(), strict=False):\n", + " ax_above, ax_below = ax_column\n", + " image = cv2.resize(read_image(image_paths[row.image_index]), (256, 256))\n", + " anomaly_map = anomaly_maps[row.image_index].numpy()\n", + " mask = masks[row.image_index].squeeze().numpy()\n", + " ax_above.imshow(image)\n", + " ax_above.contour(mask, levels=[0.5], colors=\"magenta\", linewidths=1)\n", + " ax_below.imshow(image)\n", + " ax_below.imshow(anomaly_map, cmap=\"jet\", vmin=global_vmin, vmax=global_vmax, alpha=0.30)\n", + " ax_below.contour(mask, levels=[0.5], colors=\"magenta\", linewidths=1)\n", + " ax_above.set_title(f\"{row.statistic}: {row.value:.0%} AUPIMO image {row.image_index}\")\n", + "\n", + "for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])\n", + "\n", + "axes[0, 0].set_ylabel(\"Image + GT Mask\")\n", + "axes[1, 0].set_ylabel(\"Image + GT Mask + Anomaly Map\")\n", + "fig.text(\n", + " 0.03,\n", + " -0.01,\n", + " \"Magenta: contours of the ground truth (GT) mask. \"\n", + " \"Anomaly maps colored in JET colormap with global (across all images) min-max normalization.\",\n", + " ha=\"left\",\n", + " va=\"top\",\n", + " fontsize=\"small\",\n", + " color=\"dimgray\",\n", + ")\n", + "\n", + "fig.suptitle(\"Anomalous samples from AUPIMO boxplot's statistics\")\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The heatmaps give the impression that all samples are properly detected, right?\n", + "\n", + "Notice that the lowest AUPIMO (left) is 0, but the heatmap is (contradictorily) showing a good detection.\n", + "\n", + "Why is that?\n", + "\n", + "These heatmaps are colored with a gradient from the minimum to the maximum value in all the heatmaps from the test set.\n", + "\n", + "This is not taking into account the contraints (FPR restriction) in AUPIMO.\n", + "\n", + "Let's compare with the heatmaps from some normal images." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, axes = plt.subplots(2, 5, figsize=(16, 7), layout=\"constrained\")\n", + "\n", + "# random selection of normal images\n", + "rng = np.random.default_rng(42)\n", + "normal_images_selection = rng.choice(np.where(labels == 0)[0], size=5, replace=False)\n", + "\n", + "for ax_column, index in zip(axes.T, normal_images_selection, strict=False):\n", + " ax_above, ax_below = ax_column\n", + " image = cv2.resize(read_image(image_paths[index]), (256, 256))\n", + " anomaly_map = anomaly_maps[index].numpy()\n", + " ax_above.imshow(image)\n", + " ax_below.imshow(image)\n", + " ax_below.imshow(anomaly_map, cmap=\"jet\", vmin=global_vmin, vmax=global_vmax, alpha=0.30)\n", + " ax_above.set_title(f\"image {index}\")\n", + "\n", + "for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])\n", + "\n", + "axes[0, 0].set_ylabel(\"Image\")\n", + "axes[1, 0].set_ylabel(\"Image + Anomaly Map\")\n", + "fig.text(\n", + " 0.03,\n", + " -0.01,\n", + " \"Anomaly maps colored in JET colormap with global (across all images) min-max normalization.\",\n", + " ha=\"left\",\n", + " va=\"top\",\n", + " fontsize=\"small\",\n", + " color=\"dimgray\",\n", + ")\n", + "\n", + "fig.suptitle(\"Normal samples (test set)\")\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice how the normal images also have high anomaly scores (\"hot\" colors) although there is no anomaly.\n", + "\n", + "As a matter of fact, the heatmaps can barely differentiate between some normal and anomalous images.\n", + "\n", + "See the two heatmaps below for instance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, axes = plt.subplots(1, 2, figsize=(7, 4), layout=\"constrained\")\n", + "\n", + "for ax, index in zip(axes.flatten(), [87, 65], strict=False):\n", + " image = cv2.resize(read_image(image_paths[index]), (256, 256))\n", + " anomaly_map = anomaly_maps[index].numpy()\n", + " mask = masks[index].squeeze().numpy()\n", + " ax.imshow(image)\n", + " ax.contour(mask, levels=[0.5], colors=\"magenta\", linewidths=1)\n", + " ax.imshow(anomaly_map, cmap=\"jet\", vmin=global_vmin, vmax=global_vmax, alpha=0.30)\n", + " ax.set_title(f\"image {index}\")\n", + "\n", + "for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])\n", + "\n", + "axes[0].set_title(f\"{axes[0].get_title()} (normal)\")\n", + "axes[1].set_title(f\"{axes[1].get_title()} (anomalous)\")\n", + "\n", + "fig.text(\n", + " 0.03,\n", + " -0.01,\n", + " \"Magenta: contours of the ground truth (GT) mask.\\n\"\n", + " \"Anomaly maps colored in JET colormap with global (across all images) min-max normalization.\",\n", + " ha=\"left\",\n", + " va=\"top\",\n", + " fontsize=\"small\",\n", + " color=\"dimgray\",\n", + ")\n", + "\n", + "fig.suptitle(\"Normal vs. Anomalous Samples\")\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One would expect image 65 (anomalous) to a 'hotter' heatmap than image 87 (normal), but it is the opposite.\n", + "\n", + "This shows that the model is not doing a great job." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualizing the AUPIMO on the Heatmaps\n", + "\n", + "We will create another visualization to link the heatmaps to AUPIMO.\n", + "\n", + "Recall that AUPIMO computes this integral (simplified):\n", + "\n", + "$$\n", + " \\int_{\\log(L)}^{\\log(U)} \n", + " \\operatorname{TPR}^{i}\\left( \\operatorname{FRP^{-1}}( z ) \\right)\n", + " \\, \n", + " \\mathrm{d}\\log(z) \n", + "$$\n", + "\n", + "The integration bounds -- $L$[ower] and $U$[pper] -- are FPR values.\n", + "\n", + "> More details about their meaning in the next notebook.\n", + "\n", + "We will leverage these two bounds to create a heatmap that shows them in a gradient like this:\n", + "\n", + "![Visualization of AUPIMO on the heatmaps](./pimo_viz.svg)\n", + "\n", + "If the anomaly score is\n", + "1. too low (below the lowest threshold of AUPIMO) $\\rightarrow$ not shown; \n", + "2. between the bounds $\\rightarrow$ shown in a JET gradient;\n", + "3. too high (above the highest threshold of AUPIMO) $\\rightarrow$ shown in a single color.\n", + "\n", + "> Technical detail: lower/upper bound of FPR correspond to the upper/lower bound of threshold.\n", + "\n", + "> **Why low values are not shown?**\n", + ">\n", + "> Because the values below the lower (threshold) bound would _never_ be seen as \"anomalous\" by the metric.\n", + ">\n", + "> Analogously, high values are shown in red because they are _always_ seen as \"anomalous\" by the metric." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FPR bounds\n", + "Lower bound: 0.00001\n", + "Upper bound: 0.00010\n", + "Thresholds corresponding to the FPR bounds\n", + "Lower threshold: 0.504\n", + "Upper threshold: 0.553\n" + ] + } + ], + "source": [ + "# the fpr bounds are fixed in advance in the metric object\n", + "print(f\"\"\"FPR bounds\n", + "Lower bound: {aupimo.fpr_bounds[0]:.5f}\n", + "Upper bound: {aupimo.fpr_bounds[1]:.5f}\"\"\")\n", + "\n", + "# their corresponding thresholds depend on the model's behavior\n", + "# so they only show in the result object\n", + "print(f\"\"\"Thresholds corresponding to the FPR bounds\n", + "Lower threshold: {aupimo_result.thresh_lower_bound:.3g}\n", + "Upper threshold: {aupimo_result.thresh_upper_bound:.3g}\"\"\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# we re-sample other normal images\n", + "# the FPR bounds are so strict that the heatmaps in the normal images\n", + "# become almost invisible with this colormap\n", + "max_anom_score_per_image = anomaly_maps.max(dim=2).values.max(dim=1).values # noqa: PD011\n", + "normal_images_with_highest_max_score = sorted(\n", + " zip(max_anom_score_per_image[labels == 0], torch.where(labels == 0)[0], strict=False),\n", + " reverse=True,\n", + " key=lambda x: x[0],\n", + ")\n", + "normal_images_with_highest_max_score = [idx.item() for _, idx in normal_images_with_highest_max_score[:5]]\n", + "\n", + "fig, axes = plt.subplots(2, 5, figsize=(16, 7), layout=\"constrained\")\n", + "\n", + "for ax, (_, row) in zip(axes[0], image_selection.iterrows(), strict=False):\n", + " image = cv2.resize(read_image(image_paths[row.image_index]), (256, 256))\n", + " anomaly_map = anomaly_maps[row.image_index].numpy()\n", + " mask = masks[row.image_index].squeeze().numpy()\n", + " ax.imshow(image)\n", + " #\n", + " # where the magic happens!\n", + " #\n", + " ax.imshow(\n", + " # anything below the lower threshold is set to `nan` so it's not shown\n", + " # because such values would never be detected as anomalies with AUPIMO's contraints\n", + " np.where(anomaly_map < aupimo_result.thresh_lower_bound, np.nan, anomaly_map),\n", + " cmap=\"jet\",\n", + " alpha=0.50,\n", + " # notice that vmin/vmax changed here to use the thresholds from the result object\n", + " vmin=aupimo_result.thresh_lower_bound,\n", + " vmax=aupimo_result.thresh_upper_bound,\n", + " )\n", + " ax.contour(anomaly_map, levels=[aupimo_result.thresh_lower_bound], colors=[\"blue\"], linewidths=1)\n", + " ax.contour(mask, levels=[0.5], colors=\"magenta\", linewidths=1)\n", + " ax.set_title(f\"{row.statistic}: {row.value:.0%}AUPIMO image {row.image_index}\")\n", + "\n", + "for ax, index in zip(axes[1], normal_images_with_highest_max_score, strict=False):\n", + " image = cv2.resize(read_image(image_paths[index]), (256, 256))\n", + " anomaly_map = anomaly_maps[index].numpy()\n", + " mask = masks[index].squeeze().numpy()\n", + " ax.imshow(image)\n", + " ax.imshow(\n", + " np.where(anomaly_map < aupimo_result.thresh_lower_bound, np.nan, anomaly_map),\n", + " cmap=\"jet\",\n", + " alpha=0.30,\n", + " vmin=aupimo_result.thresh_lower_bound,\n", + " vmax=aupimo_result.thresh_upper_bound,\n", + " )\n", + " ax.contour(anomaly_map, levels=[aupimo_result.thresh_lower_bound], colors=[\"blue\"], linewidths=1)\n", + " ax.set_title(f\"image {index}\")\n", + "\n", + "for ax in axes.flatten():\n", + " ax.set_xticks([])\n", + " ax.set_yticks([])\n", + "\n", + "axes[0, 0].set_ylabel(\"Anomalous\")\n", + "axes[1, 0].set_ylabel(\"Normal\")\n", + "fig.text(\n", + " 0.03,\n", + " -0.01,\n", + " \"Magenta: contours of the ground truth (GT) mask. \"\n", + " \"Anomaly maps colored in JET colormap between the thresholds in AUPIMO's integral. \"\n", + " \"Lower values are transparent, higher values are red.\",\n", + " ha=\"left\",\n", + " va=\"top\",\n", + " fontsize=\"small\",\n", + " color=\"dimgray\",\n", + ")\n", + "\n", + "fig.suptitle(\"Visualization linked to AUPIMO's bounds\")\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now the AUPIMO scores make sense with what you see in the heatmaps.\n", + "\n", + "The samples on the left and right are special cases: \n", + "- left (0% AUPIMO): nothing is seen because the model completely misses the anomaly\\*;\n", + "- right (100% AUPIMO): is practically red only because the detected the anomaly very well. \n", + "\n", + "\\* Because the scores in image 65 are as low as those in normal images." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cite Us\n", + "\n", + "AUPIMO was developed during Google Summer of Code 2023 (GSoC 2023) with the `anomalib` team from OpenVINO Toolkit.\n", + "\n", + "Our work was accepted to the British Machine Vision Conference 2024 (BMVC 2024).\n", + "\n", + "```bibtex\n", + "@misc{bertoldo2024aupimo,\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", + " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " year={2024},\n", + " eprint={2401.01984},\n", + " archivePrefix={arXiv},\n", + " primaryClass={cs.CV},\n", + " url={https://arxiv.org/abs/2401.01984}, \n", + "}\n", + "```\n", + "\n", + "Paper on arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Medium post: [medium.com/p/c653ac30e802](https://medium.com/p/c653ac30e802)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", + "\n", + "GSoC 2023 page: [summerofcode.withgoogle.com/archive/2023/projects/SPMopugd](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Utils\n", + "\n", + "Here we provide some utility functions to reproduce the techniques shown in this notebook.\n", + "\n", + "They are `numpy` compatible and cover edge cases not discussed here (check the examples)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Representative samples from the boxplot's statistics\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from numpy import ndarray\n", + "from torch import Tensor\n", + "\n", + "\n", + "def _validate_tensor_or_ndarray(x: Tensor | ndarray) -> ndarray:\n", + " if not isinstance(x, Tensor | ndarray):\n", + " msg = f\"Expected argument to be a tensor or ndarray, but got {type(x)}.\"\n", + " raise TypeError(msg)\n", + "\n", + " if isinstance(x, Tensor):\n", + " x = x.cpu().numpy()\n", + "\n", + " return x\n", + "\n", + "\n", + "def _validate_values(values: ndarray) -> None:\n", + " if values.ndim != 1:\n", + " msg = f\"Expected argument `values` to be a 1D, but got {values.ndim}D.\"\n", + " raise ValueError(msg)\n", + "\n", + "\n", + "def _validate_labels(labels: ndarray) -> ndarray:\n", + " if labels.ndim != 1:\n", + " msg = f\"Expected argument `labels` to be a 1D, but got {labels.ndim}D.\"\n", + " raise ValueError(msg)\n", + "\n", + " # if torch.is_floating_point(labels):\n", + " if np.issubdtype(labels.dtype, np.floating):\n", + " msg = f\"Expected argument `labels` to be of int or binary types, but got float: {labels.dtype}.\"\n", + " raise TypeError(msg)\n", + "\n", + " # check if it is binary and convert to int\n", + " if np.issubdtype(labels.dtype, np.bool_):\n", + " labels = labels.astype(int)\n", + "\n", + " unique_values = np.unique(labels)\n", + " nor_0_nor_1 = (unique_values != 0) & (unique_values != 1)\n", + " if nor_0_nor_1.any():\n", + " msg = f\"Expected argument `labels` to have 0s and 1s as ground truth labels, but got values {unique_values}.\"\n", + " raise ValueError(msg)\n", + "\n", + " return labels\n", + "\n", + "\n", + "def boxplot_stats(\n", + " values: Tensor | ndarray,\n", + " labels: Tensor | ndarray,\n", + " only_label: int | None = 1,\n", + " flier_policy: str | None = None,\n", + " repeated_policy: str | None = \"avoid\",\n", + ") -> list[dict[str, str | int | float | None]]:\n", + " \"\"\"Compute boxplot statistics of `values` and find the samples that are closest to them.\n", + "\n", + " This function uses `matplotlib.cbook.boxplot_stats`, which is the same function used by `matplotlib.pyplot.boxplot`.\n", + "\n", + " Args:\n", + " values (Tensor | ndarray): Values to compute boxplot statistics from.\n", + " labels (Tensor | ndarray): Labels of the samples (0=normal, 1=anomalous). Must have the same shape as `values`.\n", + " only_label (int | None): If 0 or 1, only use samples of that class. If None, use both. Defaults to 1.\n", + " flier_policy (str | None): What happens with the fliers ('outliers')?\n", + " - None: Do not include fliers.\n", + " - 'high': Include only high fliers.\n", + " - 'low': Include only low fliers.\n", + " - 'both': Include both high and low fliers.\n", + " Defaults to None.\n", + " repeated_policy (str | None): What happens if a sample has already selected [for another statistic]?\n", + " - None: Don't care, repeat the sample.\n", + " - 'avoid': Avoid selecting the same one, go to the next closest.\n", + " Defaults to 'avoid'.\n", + "\n", + " Returns:\n", + " list[dict[str, str | int | float | None]]: List of boxplot statistics.\n", + " Keys:\n", + " - 'statistic' (str): Name of the statistic.\n", + " - 'value' (float): Value of the statistic (same units as `values`).\n", + " - 'nearest' (float): Value of the sample in `values` that is closest to the statistic.\n", + " Some statistics (e.g. 'mean') are not guaranteed to be a value in `values`.\n", + " This value is the actual one when they that is the case.\n", + " - 'index': Index in `values` that has the `nearest` value to the statistic.\n", + " \"\"\"\n", + " # operate on numpy arrays only for simplicity\n", + " values = _validate_tensor_or_ndarray(values) # (N,)\n", + " labels = _validate_tensor_or_ndarray(labels) # (N,)\n", + "\n", + " # validate the arguments\n", + " _validate_values(values)\n", + " labels = _validate_labels(labels)\n", + " if values.shape != labels.shape:\n", + " msg = (\n", + " \"Expected arguments `values` and `labels` to have the same shape, \"\n", + " f\"but got {values.shape=} and {labels.shape=}.\"\n", + " )\n", + " raise ValueError(msg)\n", + " assert only_label in {None, 0, 1}, f\"Invalid argument `only_label`: {only_label}\"\n", + " assert flier_policy in {None, \"high\", \"low\", \"both\"}, f\"Invalid argument `flier_policy`: {flier_policy}\"\n", + " assert repeated_policy in {None, \"avoid\"}, f\"Invalid argument `repeated_policy`: {repeated_policy}\"\n", + "\n", + " if only_label is not None and only_label not in labels:\n", + " msg = f\"Argument {only_label=} but `labels` does not contain this class.\"\n", + " raise ValueError(msg)\n", + "\n", + " # only consider samples of the given label\n", + " # `values` and `labels` now have shape (n,) instead of (N,), where n <= N\n", + " label_filter_mask = (labels == only_label) if only_label is not None else np.ones_like(labels, dtype=bool)\n", + " values = values[label_filter_mask] # (n,)\n", + " labels = labels[label_filter_mask] # (n,)\n", + " indexes = np.nonzero(label_filter_mask)[0] # (n,) values are indices in {0, 1, ..., N-1}\n", + "\n", + " indexes_selected = set() # values in {0, 1, ..., N-1}\n", + "\n", + " def append(records_: dict, statistic_: str, value_: float) -> None:\n", + " indices_sorted_by_distance = np.abs(values - value_).argsort() # (n,)\n", + " candidate = indices_sorted_by_distance[0] # idx that refers to {0, 1, ..., n-1}\n", + "\n", + " nearest = values[candidate]\n", + " index = indexes[candidate] # index has value in {0, 1, ..., N-1}\n", + " label = labels[candidate]\n", + "\n", + " if index in indexes_selected and repeated_policy == \"avoid\":\n", + " for candidate in indices_sorted_by_distance:\n", + " index_of_candidate = indexes[candidate]\n", + " if index_of_candidate in indexes_selected:\n", + " continue\n", + " # if the code reaches here, it means that `index_of_candidate` is not repeated\n", + " # if this is never reached, the first choice will be kept\n", + " nearest = values[candidate]\n", + " label = labels[candidate]\n", + " index = index_of_candidate\n", + " break\n", + "\n", + " indexes_selected.add(index)\n", + "\n", + " records_.append(\n", + " {\n", + " \"statistic\": statistic_,\n", + " \"value\": float(value_),\n", + " \"nearest\": float(nearest),\n", + " \"index\": int(index),\n", + " \"label\": int(label),\n", + " },\n", + " )\n", + "\n", + " # function used in `matplotlib.boxplot`\n", + " boxplot_stats = mpl.cbook.boxplot_stats(values)[0] # [0] is for the only boxplot\n", + "\n", + " records = []\n", + " for stat, val in boxplot_stats.items():\n", + " if stat in {\"iqr\", \"cilo\", \"cihi\"}:\n", + " continue\n", + "\n", + " if stat != \"fliers\":\n", + " append(records, stat, val)\n", + " continue\n", + "\n", + " if flier_policy is None:\n", + " continue\n", + "\n", + " for val_ in val:\n", + " stat_ = \"flierhi\" if val_ > boxplot_stats[\"med\"] else \"flierlo\"\n", + " if flier_policy == \"high\" and stat_ == \"flierlo\":\n", + " continue\n", + " if flier_policy == \"low\" and stat_ == \"flierhi\":\n", + " continue\n", + " # else means that they match or `fliers == \"both\"`\n", + " append(records, stat_, val_)\n", + "\n", + " return sorted(records, key=lambda r: r[\"value\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Basic Usage" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " statistic value nearest index label\n", + "0 whislo 0.00 0.00 65 1\n", + "1 q1 0.53 0.53 58 1\n", + "2 mean 0.74 0.75 7 1\n", + "3 med 0.89 0.89 63 1\n", + "4 q3 1.00 1.00 22 1\n", + "5 whishi 1.00 1.00 0 1\n" + ] + } + ], + "source": [ + "# basic usage\n", + "boxplot_statistics = boxplot_stats(aupimo_result.aupimos, labels)\n", + "boxplot_statistics = pd.DataFrame.from_records(boxplot_statistics)\n", + "print(boxplot_statistics)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Repeated Statistics" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " statistic value nearest index label\n", + "0 whislo 0.00 0.00 67 1\n", + "1 q1 0.59 0.59 58 1\n", + "2 mean 0.78 0.79 43 1\n", + "3 med 0.98 0.99 9 1\n", + "4 whishi 1.00 1.00 0 1\n", + "5 q3 1.00 1.00 36 1\n" + ] + } + ], + "source": [ + "# repeated values\n", + "# if the distribution is very skewed to one side,\n", + "# some statistics may have the same value\n", + "# e.g. the Q3 and the high whisker\n", + "#\n", + "# let's simulate this situation\n", + "\n", + "# increase all values by 10% and clip to [0, 1]\n", + "mock = torch.clip(aupimo_result.aupimos.clone() * 1.10, 0, 1)\n", + "\n", + "# 'avoid' is the default policy\n", + "# notice how Q3 and the high whisker have the same value, but different indexes\n", + "print(pd.DataFrame.from_records(boxplot_stats(mock, labels, repeated_policy=\"avoid\")))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " statistic value nearest index label\n", + "0 whislo 0.00 0.00 67 1\n", + "1 q1 0.59 0.59 58 1\n", + "2 mean 0.78 0.79 43 1\n", + "3 med 0.98 0.99 9 1\n", + "4 whishi 1.00 1.00 0 1\n", + "5 q3 1.00 1.00 0 1\n" + ] + } + ], + "source": [ + "# this behavior can be changed to allow repeated values\n", + "print(pd.DataFrame.from_records(boxplot_stats(mock, labels, repeated_policy=None)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fliers" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAADvCAYAAAD2Og4yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3ZUlEQVR4nO3de1yP9/8/8Me7d+eziIpUKIVyqDmfNk1I01iIEDanDGNmPjtozofhY+aw7YP5TA4z2YfGyGkOyyk5J6Eck3NFSPX8/eHX9fVeoUjl8rjfbu/bvF+v1/W6Xtf7lTx2Xa/remtEREBERESkYnqlPQAiIiKiV42Bh4iIiFSPgYeIiIhUj4GHiIiIVI+Bh4iIiFSPgYeIiIhUj4GHiIiIVI+Bh4iIiFSPgYeIiIhUj4GHiKgM2rFjBzQaDXbs2FHaQyFSBQYeeuPMnz8fGo0GjRo1KrA+OTkZGo0G3377bYH13377LTQaDZKTk5Wy1q1bQ6PRKC8bGxu89dZbWLx4MXJzc5V2oaGhMDc31+kvb1tXV9cC9xcdHa30+9tvv+WrP3HiBEJCQlC5cmUYGRnBwcEBPXv2xIkTJ573USiuX7+O4cOHw93dHSYmJqhYsSIaNmyIMWPG4O7du4Xu53URGhqqM1/6+vpwdHRE9+7dcfLkydIe3kvbsGEDwsPDS3sYRGWKfmkPgKikRUREwNnZGfv378eZM2dQo0aNYum3SpUqmDJlCoDHAeK///0v+vfvj9OnT2Pq1KnP3NbY2BhnzpzB/v370bBhw3zjNTY2xoMHD/JtFxkZieDgYNjY2KB///5wcXFBcnIyFi1ahN9++w0rV67E+++//8x937p1Cz4+PkhPT0e/fv3g7u6Omzdv4ujRo1iwYAEGDx6cL6SpgZGREf7zn/8AALKzs3H27FksXLgQf/75J06ePAkHB4dSHuGL27BhA+bNm8fQQ/QEBh56oyQlJeHvv/9GZGQkBg4ciIiICIwbN65Y+rayskJISIjyfuDAgahZsya+//57TJgwAQYGBk/dtnr16sjOzsaKFSt0As+DBw+wdu1a+Pv7Y82aNTrbnD17Fr169UK1atWwc+dO2NraKnXDhw9HixYt0KtXLxw9ehTVqlV76r4XLVqECxcuYM+ePWjatKlOXXp6OgwNDQv9Gbyse/fuwczMrET2pa+vrzNfANC4cWN07NgRf/zxBz766KMSGQcRlQxe0qI3SkREBMqVKwd/f3988MEHiIiIeGX7MjU1RePGjXHv3j1cv379ue2Dg4OxatUqnUtg69evR2ZmJrp27Zqv/YwZM5CZmYkff/xRJ+wAQIUKFfDDDz/g3r17mD59+jP3e/bsWWi1WjRu3DhfnaWlJYyNjXXK9u3bhw4dOqBcuXIwMzODl5cX5syZo9Nm27ZtaNGiBczMzGBtbY1OnTohPj5ep014eDg0Gg1OnjyJHj16oFy5cmjevLlSv2zZMnh7e8PExAQ2Njbo3r07Ll68qNNHYmIiunTpAjs7OxgbG6NKlSro3r070tLSnnnMT2NnZwfgcRh60rlz5xAUFAQbGxtlXv/44w+lPj4+HiYmJujdu7fOdrt374ZWq8WYMWOUMmdnZ3Ts2BGbN29GvXr1YGxsjFq1aiEyMrJQY1y9erXyuVSoUAEhISG4fPmyUh8aGop58+YBgM5lO6I3HQMPvVEiIiLQuXNnGBoaIjg4GImJiThw4MAr29+5c+eg1WphbW393LY9evRASkqKziLV5cuXo02bNqhYsWK+9uvXr4ezszNatGhRYH8tW7aEs7Ozzj/MBXFyckJOTg5++eWX544xOjoaLVu2xMmTJzF8+HDMnDkTb7/9NqKiopQ2W7ZsgZ+fH65du4bw8HCMHDkSf//9N5o1a6az7ilPUFAQMjMzMXnyZOWsyqRJk9C7d2+4urpi1qxZGDFiBLZu3YqWLVvizp07AICsrCz4+flh7969+PjjjzFv3jwMGDAA586dU9o8z40bN3Djxg2kpqYiJiYGn3zyCcqXL4+OHTsqbVJTU9G0aVNs2rQJQ4YMwaRJk/DgwQO89957WLt2LQDAw8MDEyZMwC+//IJ169YBeHy2KjQ0FO7u7hg/frzOfhMTE9GtWze0b98eU6ZMgb6+PoKCghAdHf3M8f7888/o2rUrtFotpkyZgo8++giRkZFo3ry5cswDBw7Eu+++CwD45ZdflBfRG0+I3hAHDx4UABIdHS0iIrm5uVKlShUZPny4TrukpCQBIDNmzCiwnxkzZggASUpKUspatWol7u7ucv36dbl+/brEx8fLsGHDBIAEBAQo7fr06SNmZmY6/bVq1Upq164tIiI+Pj7Sv39/ERG5ffu2GBoaytKlS2X79u0CQFavXi0iInfu3BEA0qlTp2ce83vvvScAJD09/altrl69Kra2tgJA3N3dZdCgQbJ8+XK5c+eOTrvs7GxxcXERJycnuX37tk5dbm6u8ud69epJxYoV5ebNm0rZkSNHRE9PT3r37q2UjRs3TgBIcHCwTl/Jycmi1Wpl0qRJOuXHjh0TfX19pTwuLk7nMymKPn36CIB8r8qVK0tsbKxO2xEjRggA2bVrl1KWkZEhLi4u4uzsLDk5OSIikpOTI82bN5dKlSrJjRs3JCwsTPT19eXAgQM6/Tk5OQkAWbNmjVKWlpYm9vb2Ur9+faUsb863b98uIiJZWVlSsWJFqVOnjty/f19pFxUVJQDk66+/VsrCwsKEv96JdPEMD70xIiIiUKlSJbz99tsAHp/u79atG1auXImcnJyX7v/UqVOwtbWFra0tPDw8MHfuXPj7+2Px4sWF7qNHjx6IjIxEVlYWfvvtN2i12gIXHWdkZAAALCwsntlfXn16evpT21SqVAlHjhzBoEGDcPv2bSxcuBA9evRAxYoVMWHCBIgIACAuLg5JSUkYMWJEvjNWeZdMUlJScPjwYYSGhsLGxkap9/LywrvvvosNGzbk2/+gQYN03kdGRiI3Nxddu3ZVzsDcuHEDdnZ2cHV1xfbt2wE8XjMFAJs2bUJmZuYzP4eCGBsbIzo6GtHR0di0aRN++OEHmJubo0OHDjh9+rTSbsOGDWjYsKHO5TZzc3MMGDAAycnJyl1denp6+Pnnn3H37l20b98e8+fPx9ixY+Hj45Nv3w4ODjrzamlpid69eyMuLg5Xr14tcLwHDx7EtWvXMGTIEJ3LjP7+/nB3d3/umTyiNx0DD70RcnJysHLlSrz99ttISkrCmTNncObMGTRq1AipqanYunVrkfv857oIZ2dnREdHY8uWLdi9ezeuXr2KqKgoVKhQodB95q0/2bhxIyIiItCxY8cCQ01eWV7weZrCBiN7e3ssWLAAKSkpSEhIwHfffQdbW1t8/fXXWLRoEYDHa30AoE6dOk/t5/z58wCAmjVr5qvz8PDAjRs3cO/ePZ1yFxcXnfeJiYkQEbi6uioBMu8VHx+Pa9euKduNHDkS//nPf1ChQgX4+flh3rx5hV6/o9Vq4evrC19fX7Rt2xYDBgzAli1bkJaWhrFjx+oc09OO58ljBh4vPg8PD8eBAwdQu3ZtfPXVVwXuu0aNGvl+ftzc3ACgwMt+T+6noLG4u7vrjIOI8uNdWvRG2LZtG1JSUrBy5UqsXLkyX31ERATatm0LAMr/Pd+/f7/AvvLOJvxzMa+ZmRl8fX1fapz29vZo3bo1Zs6ciT179uS7MyuPlZUV7O3tcfTo0Wf2d/ToUVSuXBmWlpaF2r9Go4Gbmxvc3Nzg7+8PV1dXRERE4MMPPyzysRSWiYmJzvvc3FxoNBps3LgRWq02X/snb5GfOXMmQkND8b///Q+bN2/GsGHDMGXKFOzduxdVqlQp8liqVKmCmjVrYufOnUU/kP9v8+bNAIArV67g5s2bykJoIipdPMNDb4SIiAhUrFgRq1evzvcKDg7G2rVrlYBja2sLU1NTJCQkFNhXQkICTE1Ni3Tmpih69OiBXbt2wdLSEh06dHhqu44dOyIpKQm7d+8usH7Xrl1ITk7WWYBbFNWqVUO5cuWQkpIC4PHZCwA4fvz4U7dxcnICgAI/u1OnTqFChQrPve28evXqEBG4uLgoZ2CefP3zbjJPT098+eWX2LlzJ3bt2oXLly9j4cKFRTrWJ2VnZ+s8bNHJyempx5NXn2fhwoWIjo7GpEmTkJWVhYEDBxa4jzNnziiXCvPkXUZzdnYucJtnfbYJCQk64+BdWUQFKN0lRESvXmZmplhYWEi/fv0KrN+zZ48AkJUrVyplgYGBYmlpKefPn9dpe/78ebGwsJDAwECd8icXHj/L8xYtizxekDxu3DhZvny5UvbPRcsiIqdPnxYTExOpVauW3LhxQ6fPmzdvSq1atcTU1FTOnDnzzDHt3btX7t69m6983759AkDee+89EXm8KLewi5YrVaqk0+bYsWNPXbR8/fp1nb7OnDkjWq1WevToodNv3n7yjjUtLU0ePXqkU5+eni56enry6aefPvOYC5oHEZGEhATR19eXRo0aKWV5i5b//vtvpezu3btSrVo1nUXL586dE3Nzc+nSpYuIiCxcuFAAyNKlS3X28axFy/Xq1VPKnrZo2cvLSx48eKC027BhQ75Fy2PGjBEA+eaJ6E3GS1qkeuvWrUNGRgbee++9AusbN24MW1tbREREoFu3bgCAyZMno3HjxmjQoAEGDBgAZ2dnJCcn48cff4RGo8HkyZNf2XitrKwK9YRcV1dXLF26FD179oSnp2e+Jy3fuHEDK1asUM7MPM0vv/yCiIgIvP/++/D29oahoSHi4+OxePFiGBsb41//+heAx4tyFyxYgICAANSrVw99+/aFvb09Tp06hRMnTmDTpk0AHj8fqH379mjSpAn69++P+/fvY+7cuYU+rurVq2PixIkYO3YskpOTERgYCAsLCyQlJWHt2rUYMGAAPv30U2zbtg1Dhw5FUFAQ3NzckJ2djV9++QVarRZdunR57n6ys7OxbNkyAI8voyUnJ2PhwoXIzc3VeRjl559/jhUrVqB9+/YYNmwYbGxssHTpUiQlJWHNmjXQ09ODiKBfv34wMTHBggULADy+PXzNmjUYPnw4fH19dZ7c7Obmhv79++PAgQOoVKkSFi9ejNTUVCxZsuSp4zUwMMC0adPQt29ftGrVCsHBwUhNTcWcOXPg7OyMTz75RGnr7e0NABg2bBj8/Pyg1WrRvXv3534mRKpW2omL6FULCAgQY2NjuXfv3lPbhIaGioGBgc6Zkvj4eOnWrZtUrFhR9PX1pWLFitK9e3eJj4/Pt31xnuEpSEFnePIcPXpUgoODxd7eXgwMDMTOzk6Cg4Pl2LFjzx1P3vajR4+WBg0aiI2Njejr64u9vb0EBQXJoUOH8rXfvXu3vPvuu2JhYSFmZmbi5eUlc+fO1WmzZcsWadasmZiYmIilpaUEBATIyZMnddo87QxPnjVr1kjz5s3FzMxMzMzMxN3dXcLCwiQhIUFEHp9R6devn1SvXl2MjY3FxsZG3n77bdmyZctzj7mg29ItLS2lTZs2BW5/9uxZ+eCDD8Ta2lqMjY2lYcOGEhUVpdTPmTMn31kbEZELFy6IpaWldOjQQSlzcnISf39/2bRpk3h5eYmRkZG4u7vnm9t/nuHJs2rVKqlfv74YGRmJjY2N9OzZUy5duqTTJjs7Wz7++GOxtbUVjUbDW9SJREQj8o8LyURE9Mo4OzujTp06Og9rJKJXj4uWiYiISPUYeIiIiEj1GHiIiIhI9biGh4iIiFSPZ3iIiIhI9Rh4iIiISPUK/eDB3NxcXLlyBRYWFnxsOREREb1SIoKMjAw4ODhAT+/lz88UOvBcuXIFjo6OL71DIiIiosK6ePHiC30Z8D8VOvBYWFgoOy7sNy8TERERvYj09HQ4Ojoq+eNlFTrw5F3GsrS0ZOAhIiKiElFcy2i4aJmIiIhUj4GHiIiIVI+Bh4iIiFSPgYeIiIhUj4GHiIiIVO+NCzzJycnQaDQ4fPhwaQ9FcerUKTRu3BjGxsaoV69egW1at26NESNGlOi4iIiI1KLEA09oaCg0Gg2mTp2qU/7777+/sU9wHjduHMzMzJCQkICtW7cW2CYyMhITJkwo4ZGVnq1bt6Jp06awsLCAnZ0dxowZg+zsbKV+x44d6NSpE+zt7WFmZoZ69eohIiKiFEdMRERlWamc4TE2Nsa0adNw+/bt0tj9K5GVlfXC2549exbNmzeHk5MTypcvX2AbGxubYnv4Ull35MgRdOjQAe3atUNcXBxWrVqFdevW4fPPP1fa/P333/Dy8sKaNWtw9OhR9O3bF71790ZUVFQpjpyIiMqqUgk8vr6+sLOzw5QpU57aJjw8PN/lnX//+99wdnZW3oeGhiIwMBCTJ09GpUqVYG1tjfHjxyM7OxujR4+GjY0NqlSpgiVLluTr/9SpU2jatCmMjY1Rp04d/PXXXzr1x48fR/v27WFubo5KlSqhV69euHHjhlLfunVrDB06FCNGjECFChXg5+dX4HHk5uZi/PjxqFKlCoyMjFCvXj38+eefSr1Go0FsbCzGjx8PjUaD8PDwAvv55yUtZ2dnTJw4Eb1794a5uTmcnJywbt06XL9+HZ06dYK5uTm8vLxw8OBBZZubN28iODgYlStXhqmpKTw9PbFixQqd/WRkZKBnz54wMzODvb09Zs+enW/fDx8+xKefforKlSvDzMwMjRo1wo4dO5T68+fPIyAgAOXKlYOZmRlq166NDRs2FHhcBVm1ahW8vLzw9ddfo0aNGmjVqhWmT5+OefPmISMjAwDwr3/9CxMmTEDTpk1RvXp1DB8+HO3atUNkZGSh90NERG+OUgk8Wq0WkydPxty5c3Hp0qWX6mvbtm24cuUKdu7ciVmzZmHcuHHo2LEjypUrh3379mHQoEEYOHBgvv2MHj0ao0aNQlxcHJo0aYKAgADcvHkTAHDnzh288847qF+/Pg4ePIg///wTqamp6Nq1q04fS5cuhaGhIfbs2YOFCxcWOL45c+Zg5syZ+Pbbb3H06FH4+fnhvffeQ2JiIgAgJSUFtWvXxqhRo5CSkoJPP/200Mc+e/ZsNGvWDHFxcfD390evXr3Qu3dvhISE4NChQ6hevTp69+4NEQEAPHjwAN7e3vjjjz9w/PhxDBgwAL169cL+/fuVPkeOHIk9e/Zg3bp1iI6Oxq5du3Do0CGd/Q4dOhQxMTFYuXIljh49iqCgILRr1045prCwMDx8+BA7d+7EsWPHMG3aNJibmyvbOzs7PzXYAY8DlbGxsU6ZiYkJHjx4gNjY2Kdul5aWBhsbm0J/fkRE9AaRQkpLSxMAkpaWVthNCtSnTx/p1KmTiIg0btxY+vXrJyIia9eulSeHM27cOKlbt67OtrNnzxYnJyedvpycnCQnJ0cpq1mzprRo0UJ5n52dLWZmZrJixQoREUlKShIAMnXqVKXNo0ePpEqVKjJt2jQREZkwYYK0bdtWZ98XL14UAJKQkCAiIq1atZL69es/93gdHBxk0qRJOmVvvfWWDBkyRHlft25dGTdu3DP7adWqlQwfPlx57+TkJCEhIcr7lJQUASBfffWVUhYTEyMAJCUl5an9+vv7y6hRo0REJD09XQwMDGT16tVK/Z07d8TU1FTZ9/nz50Wr1crly5d1+mnTpo2MHTtWREQ8PT0lPDz8qft85513ZO7cuU+t37Rpk+jp6cny5cslOztbLl26JC1atBAAsnz58gK3WbVqlRgaGsrx48ef2i8REb0+iit35Cn0d2m9CtOmTcM777xTpLMa/1S7dm2dr42vVKkS6tSpo7zXarUoX748rl27prNdkyZNlD/r6+vDx8cH8fHxAB6vIdm+fbvOWYk8Z8+ehZubGwDA29v7mWNLT0/HlStX0KxZM53yZs2a4ciRI4U8wqfz8vJS/lypUiUAgKenZ76ya9euwc7ODjk5OZg8eTJ+/fVXXL58GVlZWXj48CFMTU0BAOfOncOjR4/QsGFDpQ8rKyvUrFlTeX/s2DHk5OQon0Gehw8fKuuPhg0bhsGDB2Pz5s3w9fVFly5ddMb6tIXZedq2bYsZM2Zg0KBB6NWrF4yMjPDVV19h165dOnOdZ/v27ejbty9++ukn1K5d+9kfGhERvZFK9bb0li1bws/PD2PHjs1Xp6enp1yKyfPo0aN87QwMDHTeazSaAstyc3MLPa67d+8iICAAhw8f1nklJiaiZcuWSjszM7NC9/kqPHmceXe4FVSWd+wzZszAnDlzMGbMGGzfvh2HDx+Gn59fkRZc3717F1qtFrGxsTqfTXx8PObMmQMA+PDDD3Hu3Dn06tULx44dg4+PD+bOnVukYxs5ciTu3LmDCxcu4MaNG+jUqRMAoFq1ajrt/vrrLwQEBGD27Nno3bt3kfZBRERvjlJ/Ds/UqVOxfv16xMTE6JTb2tri6tWrOqGnOJ+ds3fvXuXP2dnZiI2NhYeHBwCgQYMGOHHiBJydnVGjRg2dV1FCjqWlJRwcHLBnzx6d8j179qBWrVrFcyBFsGfPHnTq1AkhISGoW7cuqlWrhtOnTyv11apVg4GBAQ4cOKCUpaWl6bSpX78+cnJycO3atXyfjZ2dndLO0dERgwYNQmRkJEaNGoWffvqpyOPVaDRwcHCAiYkJVqxYAUdHRzRo0ECp37FjB/z9/TFt2jQMGDCgyP0TEdGbo9QDj6enJ3r27InvvvtOp7x169a4fv06pk+fjrNnz2LevHnYuHFjse133rx5WLt2LU6dOoWwsDDcvn0b/fr1A/B40e2tW7cQHByMAwcO4OzZs9i0aRP69u2LnJycIu1n9OjRmDZtGlatWoWEhAR8/vnnOHz4MIYPH15sx1JYrq6uiI6Oxt9//434+HgMHDgQqampSr2FhQX69OmD0aNHY/v27Thx4gT69+8PPT095WyRm5sbevbsid69eyMyMhJJSUnYv38/pkyZgj/++AMAMGLECGzatAlJSUk4dOgQtm/froRJAGjTpg2+//77Z451xowZOHbsGE6cOIEJEyZg6tSp+O6776DVagE8vozl7++PYcOGoUuXLrh69SquXr2KW7duFffHRkREKlDqgQcAxo8fn++Sk4eHB+bPn4958+ahbt262L9//0ut9fmnqVOnYurUqahbty52796NdevWoUKFCgCgnJXJyclB27Zt4enpiREjRsDa2rrANSTPMmzYMIwcORKjRo2Cp6cn/vzzT6xbtw6urq7FdiyF9eWXX6JBgwbw8/ND69atYWdnh8DAQJ02s2bNQpMmTdCxY0f4+vqiWbNm8PDw0LlrasmSJejduzdGjRqFmjVrIjAwEAcOHEDVqlUBADk5OQgLC4OHhwfatWsHNzc3zJ8/X9n+7NmzOrf4F2Tjxo1o0aIFfHx88Mcff+B///ufzliXLl2KzMxMTJkyBfb29sqrc+fOL/9BERGR6mjknwtlniI9PR1WVlZIS0uDpaXlqx4XlRH37t1D5cqVMXPmTPTv37+0h0NERG+I4s4dpXqXFpU9cXFxOHXqFBo2bIi0tDSMHz8eAJRFw0RERK8jBh7K59tvv0VCQgIMDQ3h7e2NXbt2KZf7iIiIXkcMPKSjfv36z3yaMRER0euoTCxaJiIiInqVGHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj19Et7AERE9HSJiYnIyMgo7WEQFRsLCwu4urqW+H4ZeIiIyqjExES4ubmV9jBIZezMNRjobYgfYrNw9a6UyhhOnz5d4qGHgYeIqIzKO7OzbNkyeHh4lPJoSC1M7pyGx86B6Pb1z7hvXbKBOj4+HiEhIaVy1pKBh4iojPPw8ECDBg1KexikFlf0gJ2Ah7s74FCvtEdTYrhomYiIiFSPgYeIiIhUj4GHiIiIVI+Bh4iIiFSPgYeIiIhUj4GHiIiIVI+Bh4iIiFSPgYeIiIhUj4GHiIiIVI+Bh4iIiFSPgYeIiIhUj4GHXlhmZiYOHTqEzMzM0h4KERG9RuLj40v83w4GHnphp06dgre3N06dOlXaQyEiotdISEhIif/bwcBDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqqdfnJ1lZWVh/vz5OHv2LKpXr44hQ4bA0NAQAJCTk4Ndu3YhJSUF9vb2aNGiBbRabXHu/oWU1XERERFR8Sm2wPPZZ59h9uzZyM7OVspGjx6NTz75BI0bN8aoUaOQnJys1Dk7O2PmzJno3LlzcQ2hyCIjI8vkuIiIiKh4Fcslrc8++wwzZsxA+fLl8dNPPyElJQU//fQTypcvjxkzZqBLly7w9PRETEwMMjIyEBMTA09PT3zwwQeIjIwsjiEUWWRkJD744IMyNy4iIiIqfhoRkcI0TE9Ph5WVFdLS0mBpaamUZ2VlwczMDOXLl8elS5egr/9/J40ePnwIU1NTiAgyMzNhbGys1OXm5iIwMBDHjx9HYmJiiV5GysnJQY0aNeDp6Ynff/8denr/l/tKc1yvm0OHDsHb2xuxsbFo0KBBaQ+HSHX4d4xeiSuHgR9bAQP+Ahzqleiu836mATz35/ppueNFvfQlrfnz5yM7OxsTJ07UCTsAEBMTg9zcXADAwoULMWLECKVOT08PY8eORdOmTbFr1y60bt36ZYdSaLt27UJycjJWrFihE3ZKe1yvm/v37wMA4uPjS3kkROqU93cr7+8a0evuyZ/lkv65funAc/bsWQBAx44d89WlpKTka/ekOnXq5GtXEvL2l7f/fyqtcb1u8tY+hYSElO5AiFQuOTkZzZo1K+1hEL20J9fMlvTP9UsHnurVqwMAoqKi8OGHH+rU2dvb52v3pOPHj+drVxLy9nf8+HE0bty4zIzrdePs7AwAWLZsGTw8PEp3MEQqFB8fj5CQEOXvGtHr7smf5ZL+uX7pwDNkyBCMHj0aX375JUJDQ3UuazVp0gR6enoQEQwaNEhnu9zcXEyZMgUuLi5o0aLFyw6jSFq0aAFnZ2dMnjy5wDU8pTWu142JiQkAwMPDg+sLiF6hvL9rRK+7J3+WS/rn+qXv0jI0NMQnn3yC1NRUVKlSBT/++COuXLmCH3/8EU5OTsjNzYWIoGvXrjp3QwUGBiIqKgrffvttiS8M1mq1mDlzJqKiohAYGFhmxkVERESvRrE8h2f69OkAgNmzZ2PgwIH/17m+PkaPHq08h6dp06ZKnYuLC3777bdSe95N586d8dtvv5W5cREREVHxK7YHD06fPh0TJ0586pOWO3XqVOaeaNy5c+cyOS4iIiIqXsX61RKGhoY6t54/SavVlslbvMvquIiIiKj48MtDiYiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9Rh46IW5u7sjNjYW7u7upT0UIiJ6jSxbtqzE/+0o1q+WoDeLqakpGjRoUNrDICKi14yHhwdMTU1LdJ88w0NERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHLw8lIiqjMjMzAQCHDh0q5ZGQmpjcOQ0PAPGnTuH+1dwS3Xd8fHyJ7u9JDDxERGXUqVOnAAAfffRRKY+E1MTOXIOB3ob4YWYPXL0rpTIGCwuLEt8nAw8RURkVGBgIAHB3d4epqWnpDoZU571S2q+FhQVcXV1LfL8aESlUvEtPT4eVlRXS0tJgaWn5qsdFREREb7Dizh1ctExERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKqnX9iGIgIASE9Pf2WDISIiIgL+L2/k5Y+XVejAk5GRAQBwdHQslh0TERERPU9GRgasrKxeuh+NFDI65ebm4sqVK7CwsIBGo3lqu/T0dDg6OuLixYuwtLR86QFS8eL8lH2co7KN81O2cX7KvsLOkYggIyMDDg4O0NN7+RU4hT7Do6enhypVqhS6Y0tLS/6wlWGcn7KPc1S2cX7KNs5P2VeYOSqOMzt5uGiZiIiIVI+Bh4iIiFSv2AOPkZERxo0bByMjo+LumooB56fs4xyVbZyfso3zU/aV1hwVetEyERER0euKl7SIiIhI9Rh4iIiISPUYeIiIiEj1GHiIiIhI9V4o8MybNw/Ozs4wNjZGo0aNsH//fqVu5MiRsLGxgaOjIyIiInS2W716NQICAl5uxKSYMmUK3nrrLVhYWKBixYoIDAxEQkKCTpsHDx4gLCwM5cuXh7m5Obp06YLU1FSl/tatWwgICIC5uTnq16+PuLg4ne3DwsIwc+bMEjketZs6dSo0Gg1GjBihlHF+St/ly5cREhKC8uXLw8TEBJ6enjh48KBSLyL4+uuvYW9vDxMTE/j6+iIxMVGpf/jwIXr16gVLS0u4ublhy5YtOv3PmDEDH3/8cYkdj5rk5OTgq6++gouLC0xMTFC9enVMmDBB57uVOD8lZ+fOnQgICICDgwM0Gg1+//13nfrnzQXw+Hdaz549YWlpCWtra/Tv3x93795V6pOTk9GyZUuYmZmhZcuWSE5O1tm+Y8eOWLNmzYsdgBTRypUrxdDQUBYvXiwnTpyQjz76SKytrSU1NVXWrVsnlSpVkgMHDsjy5cvF2NhYrl+/LiIid+7cEVdXVzl//nxRd0lP4efnJ0uWLJHjx4/L4cOHpUOHDlK1alW5e/eu0mbQoEHi6OgoW7dulYMHD0rjxo2ladOmSv3IkSOlVatWkpCQICNGjBBvb2+lLiYmRry9vSU7O7tEj0uN9u/fL87OzuLl5SXDhw9Xyjk/pevWrVvi5OQkoaGhsm/fPjl37pxs2rRJzpw5o7SZOnWqWFlZye+//y5HjhyR9957T1xcXOT+/fsiIvLdd9+Jh4eHHD9+XGbMmCG2traSm5srIiLnzp0TV1dXSUtLK5Xje91NmjRJypcvL1FRUZKUlCSrV68Wc3NzmTNnjtKG81NyNmzYIF988YVERkYKAFm7dq1O/fPmQkSkXbt2UrduXdm7d6/s2rVLatSoIcHBwUp9586dpXv37nL69Gnp2rWrdOnSRalbuXKlBAQEvPD4ixx4GjZsKGFhYcr7nJwccXBwkClTpsi0adOkW7duSl3FihVl//79IiIyYMAAmTVr1gsPlJ7v2rVrAkD++usvEXkcMg0MDGT16tVKm/j4eAEgMTExIiLSvn17WbBggYiInDx5UkxNTUVEJCsrS+rWrSsHDhwo4aNQn4yMDHF1dZXo6Ghp1aqVEng4P6VvzJgx0rx586fW5+bmip2dncyYMUMpu3PnjhgZGcmKFStERGTw4MEyZswYERHJzMwUAHLt2jURefw/JZGRka/wCNTN399f+vXrp1PWuXNn6dmzp4hwfkrTPwNPYebi5MmTAkDn99bGjRtFo9HI5cuXRUTEw8NDNm7cKCKPA1atWrVEROT27dtSo0YNuXDhwguPuUiXtLKyshAbGwtfX1+lTE9PD76+voiJiUHdunVx8OBB3L59G7Gxsbh//z5q1KiB3bt349ChQxg2bNiLnYaiQklLSwMA2NjYAABiY2Px6NEjnflyd3dH1apVERMTAwCoW7cutm3bhuzsbGzatAleXl4AgOnTp6N169bw8fEp4aNQn7CwMPj7++vMA8D5KQvWrVsHHx8fBAUFoWLFiqhfvz5++uknpT4pKQlXr17VmSMrKys0atRIZ452796N+/fvY9OmTbC3t0eFChUQEREBY2NjvP/++yV+XGrRtGlTbN26FadPnwYAHDlyBLt370b79u0BcH7KksLMRUxMDKytrXV+b/n6+kJPTw/79u0D8Hi+tmzZgtzcXGzevFn5nTd69GiEhYXB0dHxxQdZlHR0+fJlASB///23Tvno0aOlYcOGIiIybtw4qV69utSpU0ciIyPl4cOHUqdOHTl48KDMnTtX3NzcpGnTpnL8+PEXTmmUX05Ojvj7+0uzZs2UsoiICDE0NMzX9q233pLPPvtMRB4n8ODgYKlataq0bNlSTpw4IadPnxZXV1e5ceOGDBw4UFxcXCQoKEju3LlTYsejFitWrJA6deoop3SfPMPD+Sl9RkZGYmRkJGPHjpVDhw7JDz/8IMbGxvLzzz+LiMiePXsEgFy5ckVnu6CgIOnatauIPD7bNmTIEHF2dhYfHx/ZtWuX3Lx5U6pVqyYXLlyQL774QqpXry5t27aVS5culfgxvs5ycnJkzJgxotFoRF9fXzQajUyePFmp5/yUHvzjDE9h5mLSpEni5uaWry9bW1uZP3++iIhcunRJ/P39xdHRUfz9/eXSpUvy119/iY+Pj9y8eVOCgoLExcVFBg4cKA8fPizSmAv9bemFFR4ejvDwcOX9N998A19fXxgYGGDixIk4duwYoqKi0Lt3b8TGxhb37t9YYWFhOH78OHbv3l2k7aysrLB8+XKdsnfeeQczZsxAREQEzp07h4SEBHz00UcYP348F8gWwcWLFzF8+HBER0fD2Nj4hfrg/Lxaubm58PHxweTJkwEA9evXx/Hjx7Fw4UL06dOnUH0YGBhg3rx5OmV9+/bFsGHDEBcXh99//x1HjhzB9OnTMWzYsBdfcPkG+vXXXxEREYHly5ejdu3aOHz4MEaMGAEHBwfOj0pVrlwZUVFRyvuHDx/Cz88PS5cuxcSJE2FhYYGEhAS0a9cOP/zwQ5EWnBfpklaFChWg1Wp17iIBgNTUVNjZ2eVrf+rUKSxbtgwTJkzAjh070LJlS9ja2qJr1644dOgQMjIyirJ7eoqhQ4ciKioK27dvR5UqVZRyOzs7ZGVl4c6dOzrtnzZfALBkyRJYW1ujU6dO2LFjBwIDA2FgYICgoCDs2LHjFR6F+sTGxuLatWto0KAB9PX1oa+vj7/++gvfffcd9PX1UalSJc5PKbO3t0etWrV0yjw8PHDhwgUAUOahsL/zAGD79u04ceIEhg4dih07dqBDhw4wMzND165dOUdFNHr0aHz++efo3r07PD090atXL3zyySeYMmUKAM5PWVKYubCzs8O1a9d06rOzs3Hr1q2nztfkyZPRtm1beHt7Y8eOHejSpQsMDAzQuXPnIs9XkQKPoaEhvL29sXXrVqUsNzcXW7duRZMmTXTaiggGDhyIWbNmwdzcHDk5OXj06BEAKP/Nyckp0mBJl4hg6NChWLt2LbZt2wYXFxedem9vbxgYGOjMV0JCAi5cuJBvvgDg+vXrGD9+PObOnQsA+eaM81U0bdq0wbFjx3D48GHl5ePjg549eyp/5vyUrmbNmuV7lMPp06fh5OQEAHBxcYGdnZ3OHKWnp2Pfvn0FzlHeYwZ++OEHaLVaztFLyszMhJ6e7j9TWq0Wubm5ADg/ZUlh5qJJkya4c+eOztWdbdu2ITc3F40aNcrXZ3x8PJYvX44JEyYAKIbfeUW6ACaPbwszMjKSn3/+WU6ePCkDBgwQa2truXr1qk67H3/8Ued2sn379omlpaXExMTI119/ray8phc3ePBgsbKykh07dkhKSoryyszMVNoMGjRIqlatKtu2bZODBw9KkyZNpEmTJgX216NHD5k7d67yftq0aeLt7S0nT56U9u3by5AhQ175Mandk2t4RDg/pW3//v2ir68vkyZNksTERImIiBBTU1NZtmyZ0mbq1KlibW0t//vf/+To0aPSqVOnfLfa5vnXv/4lo0aNUt6vWrVKqlatKkeOHJH+/ftLhw4dSuS41KJPnz5SuXJl5bb0yMhIqVChgrLGTYTzU5IyMjIkLi5O4uLiBIDMmjVL4uLilMfNFGYu2rVrJ/Xr15d9+/bJ7t27xdXVVee29Dy5ubnSvHlzWb9+vVI2ePBg8ff3l5MnT0r9+vVl+vTpRRp/kQOPiMjcuXOlatWqYmhoKA0bNpS9e/fq1F+9elWcnJyU28zyfPPNN2JjYyPu7u6yb9++F9k1PQFAga8lS5Yobe7fvy9DhgyRcuXKiampqbz//vuSkpKSr68///xTGjZsKDk5OUrZvXv3JCgoSCwsLKRNmzaSmppaEoelav8MPJyf0rd+/XqpU6eOGBkZibu7u/z444869bm5ufLVV19JpUqVxMjISNq0aSMJCQn5+jl27JjUqFFD5zlYOTk5MnjwYLG0tJS33npLEhMTX/nxqEl6eroMHz5cqlatKsbGxlKtWjX54osvdBarcn5Kzvbt2wv8N6dPnz4iUri5uHnzpgQHB4u5ublYWlpK3759JSMjI9++Fi5cqHPSREQkNTVV2rRpIxYWFhIUFCT37t0r0vg1Ik88spKIiIhIhfhdWkRERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8REREpHoMPERERKR6DDxERESkegw8RPTaCA8Ph0ajgUajwb///e+X6qt169ZKX4cPHy6W8RFR2cXAQ6QSMTEx0Gq18Pf3z1e3Y8cOaDSafN/MDgDOzs464SEvBGg0GlhZWaFZs2bYtm2bUh8aGorAwECd9xqNBoMGDcrXd1hYGDQaDUJDQ3XKL168iH79+sHBwQGGhoZwcnLC8OHDcfPmzeceZ+3atZGSkoIBAwYoZSNHjoSNjQ0cHR0RERGh03716tUICAjI109kZCT279//3P0RkTow8BCpxKJFi/Dxxx9j586duHLlykv1tWTJEqSkpGDPnj2oUKECOnbsiHPnzj21vaOjI1auXIn79+8rZQ8ePMDy5ctRtWpVnbbnzp2Dj48PEhMTsWLFCpw5cwYLFy7E1q1b0aRJE9y6deuZY9PX14ednR1MTU0BAOvXr8fy5cuxefNmTJ8+HR9++CFu3LgBAEhLS8MXX3yBefPm5evHxsYGtra2hf5MiOj1xsBDpAJ3797FqlWrMHjwYPj7++Pnn39+qf6sra1hZ2eHOnXqYMGCBbh//z6io6Of2r5BgwZwdHREZGSkUhYZGYmqVauifv36Om3DwsJgaGiIzZs3o1WrVqhatSrat2+PLVu24PLly/jiiy+KNNb4+Hi0bt0aPj4+CA4OhqWlJZKSkgAAn332GQYPHpwvdBHRm4eBh0gFfv31V7i7u6NmzZoICQnB4sWLUVzfC2xiYgIAyMrKema7fv36YcmSJcr7xYsXo2/fvjptbt26hU2bNmHIkCFKv3ns7OzQs2dPrFq1qkhjr1u3Lg4ePIjbt28jNjYW9+/fR40aNbB7924cOnQIw4YNK3RfRKReDDxEKrBo0SKEhIQAANq1a4e0tDT89ddfL91vZmYmvvzyS2i1WrRq1eqZbUNCQrB7926cP38e58+fx549e5Qx5UlMTISIwMPDo8A+PDw8cPv2bVy/fr3QY/Tz80NISAjeeusthIaGYunSpTAzM8PgwYOxcOFCLFiwADVr1kSzZs1w4sSJQvdLROqiX9oDIKKXk5CQgP3792Pt2rUAHq9x6datGxYtWoTWrVu/UJ/BwcHQarW4f/8+bG1tsWjRInh5eT1zG1tbW+VymojA398fFSpUKLBtcZ19yhMeHo7w8HDl/TfffANfX18YGBhg4sSJOHbsGKKiotC7d2/ExsYW676J6PXAwEP0mlu0aBGys7Ph4OCglIkIjIyM8P3338PKygqWlpYAHi/itba21tn+zp07sLKy0imbPXs2fH19YWVlVaSFvf369cPQoUMBoMCFwjVq1IBGo0F8fDzef//9fPXx8fEoV67cSy0mPnXqFJYtW4a4uDgsXrwYLVu2hK2tLbp27Yp+/fohIyMDFhYWL9w/Eb2eeEmL6DWWnZ2N//73v5g5cyYOHz6svI4cOQIHBwesWLECAODq6go9Pb18ZzfOnTuHtLQ0uLm56ZTb2dmhRo0aRQ4e7dq1Q1ZWFh49egQ/P7989eXLl8e7776L+fPn69zRBQBXr15FREQEunXrBo1GU6T95hERDBw4ELNmzYK5uTlycnLw6NEjAFD+m5OT80J9E9HrjWd4iF5jUVFRuH37Nvr375/vLE2XLl2waNEiDBo0CBYWFvjwww8xatQo6Ovrw9PTExcvXsSYMWPQuHFjNG3atFjGo9VqER8fr/y5IN9//z2aNm0KPz8/TJw4ES4uLjhx4gRGjx6NypUrY9KkSS+8///85z+wtbVVnrvTrFkzhIeHY+/evdi4cSNq1aqV7wwXEb0ZeIaH6DW2aNEi5dLTP3Xp0gUHDx7E0aNHAQBz5sxBnz59MGbMGNSuXRuhoaHw8vLC+vXrX/iMSkEsLS2VS2gFcXV1xcGDB1GtWjV07doV1atXx4ABA/D2228jJiYGNjY2L7Tf1NRUTJo0Cd99951S1rBhQ4waNQr+/v749ddfde4iI6I3i0aKe/UgEdErEh4ejt9//73YvgoiOTkZLi4uiIuLQ7169YqlTyIqm3iGh4heK8eOHYO5uTnmz5//Uv20b98etWvXLqZREVFZxzM8RPTauHXrlvLVE7a2tgVeyiusy5cvKwunq1atCkNDw2IZIxGVTQw8REREpHq8pEVERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqsfAQ0RERKrHwENERESqx8BDREREqvf/AOgpDv2lH617AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# fliers\n", + "# if the distribution is very skewed to one side,\n", + "# it is possible that some extreme values are considered\n", + "# are considered as outliers, showing as fliers in the boxplot\n", + "#\n", + "# there are two types of fliers: high and low\n", + "# they are defined as:\n", + "# - high: values > high whisker = Q3 + 1.5 * IQR\n", + "# - low: values < low whisker = Q1 - 1.5 * IQR\n", + "# where IQR = Q3 - Q1\n", + "\n", + "# let's artificially simulate this situation\n", + "# we will create a distortion in the values so that\n", + "# high values (close to 1) become even higher\n", + "# and low values (close to 0) become even lower\n", + "\n", + "\n", + "def distortion(vals: Tensor) -> Tensor:\n", + " \"\"\"Artificial distortion to simulate a skewed distribution.\n", + "\n", + " To visualize it:\n", + " ```\n", + " fig, ax = plt.subplots()\n", + " t = np.linspace(0, 1, 100)\n", + " ax.plot(t, np.clip(distortion(t), 0, 1), label=\"distortion\")\n", + " ax.plot(t, t, label=\"identity\", linestyle=\"--\")\n", + " fig\n", + " ```\n", + " \"\"\"\n", + " return vals + 0.12 * (vals * (1 - vals) * 4)\n", + "\n", + "\n", + "mock = torch.clip(distortion(aupimo_result.aupimos.clone()), 0, 1)\n", + "\n", + "fig, ax = plt.subplots(figsize=(7, 2))\n", + "ax.boxplot(\n", + " mock[labels == 1].numpy(),\n", + " vert=False,\n", + " widths=0.4,\n", + ")\n", + "_ = ax.set_yticks([])\n", + "ax.set_xlim(0 - (eps := 2e-2), 1 + eps)\n", + "ax.xaxis.set_major_formatter(PercentFormatter(1))\n", + "ax.set_xlabel(\"AUPIMO [%]\")\n", + "ax.set_title(\"AUPIMO Scores Boxplot\")\n", + "num_images = (labels == 1).sum().item()\n", + "ax.annotate(\n", + " text=f\"Number of images: {num_images}\",\n", + " xy=(0.03, 0.95),\n", + " xycoords=\"axes fraction\",\n", + " xytext=(0, 0),\n", + " textcoords=\"offset points\",\n", + " annotation_clip=False,\n", + " verticalalignment=\"top\",\n", + ")\n", + "fig # noqa: B018, RUF100" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " statistic value nearest index label\n", + "0 whislo 0.24 0.24 44 1\n", + "1 q1 0.65 0.65 58 1\n", + "2 mean 0.79 0.78 29 1\n", + "3 med 0.94 0.93 63 1\n", + "4 q3 1.00 1.00 22 1\n", + "5 whishi 1.00 1.00 0 1\n" + ] + } + ], + "source": [ + "# `None` is the default policy, so the fliers are not returned\n", + "print(pd.DataFrame.from_records(boxplot_stats(mock, labels, flier_policy=None)))" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "with option 'low'\n", + " statistic value nearest index label\n", + "0 flierlo 0.00 0.00 65 1\n", + "1 flierlo 0.00 0.00 67 1\n", + "2 flierlo 0.01 0.01 71 1\n", + "3 flierlo 0.09 0.09 64 1\n", + "4 whislo 0.24 0.24 44 1\n", + "5 q1 0.65 0.65 58 1\n", + "6 mean 0.79 0.78 29 1\n", + "7 med 0.94 0.93 63 1\n", + "8 q3 1.00 1.00 22 1\n", + "9 whishi 1.00 1.00 0 1\n", + "with option 'both'\n", + " statistic value nearest index label\n", + "0 flierlo 0.00 0.00 65 1\n", + "1 flierlo 0.00 0.00 67 1\n", + "2 flierlo 0.01 0.01 71 1\n", + "3 flierlo 0.09 0.09 64 1\n", + "4 whislo 0.24 0.24 44 1\n", + "5 q1 0.65 0.65 58 1\n", + "6 mean 0.79 0.78 29 1\n", + "7 med 0.94 0.93 63 1\n", + "8 q3 1.00 1.00 22 1\n", + "9 whishi 1.00 1.00 0 1\n" + ] + } + ], + "source": [ + "# one can choose to include only high or low fliers, or both\n", + "# since there are only low fliers...\n", + "\n", + "# 'low' and 'both' will return the same result\n", + "print(\"with option 'low'\")\n", + "print(pd.DataFrame.from_records(boxplot_stats(mock, labels, flier_policy=\"low\")))\n", + "\n", + "print(\"with option 'both'\")\n", + "print(pd.DataFrame.from_records(boxplot_stats(mock, labels, flier_policy=\"both\")))" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "with option 'high'\n", + " statistic value nearest index label\n", + "0 whislo 0.24 0.24 44 1\n", + "1 q1 0.65 0.65 58 1\n", + "2 mean 0.79 0.78 29 1\n", + "3 med 0.94 0.93 63 1\n", + "4 q3 1.00 1.00 22 1\n", + "5 whishi 1.00 1.00 0 1\n" + ] + } + ], + "source": [ + "# and 'high' will return no fliers (same as `flier_policy=None` in this case)\n", + "print(\"with option 'high'\")\n", + "print(pd.DataFrame.from_records(boxplot_stats(mock, labels, flier_policy=\"high\")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other applications and `only_label` argument" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stats for the maximum anomaly score in the anomaly maps\n", + " statistic value nearest index label\n", + "0 whislo 0.46 0.46 65 1\n", + "1 q1 0.63 0.63 48 1\n", + "2 med 0.70 0.71 10 1\n", + "3 mean 0.73 0.73 118 1\n", + "4 q3 0.81 0.81 115 1\n", + "5 whishi 1.00 1.00 22 1\n" + ] + } + ], + "source": [ + "# other applications\n", + "# since the function is agnostic to the meaning of the values\n", + "# we can also use it to find representative samples\n", + "# with another metric or signal\n", + "#\n", + "# in the last plot cell we used the maximum anomaly score per image\n", + "# to select normal images, so let's reuse that criterion here\n", + "\n", + "# recompute it for didactic purposes\n", + "max_anom_score_per_image = anomaly_maps.max(dim=2).values.max(dim=1).values # noqa: PD011\n", + "print(\"stats for the maximum anomaly score in the anomaly maps\")\n", + "print(pd.DataFrame.from_records(boxplot_stats(max_anom_score_per_image, labels)))\n", + "# notice that the indices are not the same as before" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " statistic value nearest index label\n", + "0 whislo 0.42 0.42 90 0\n", + "1 q1 0.43 0.43 80 0\n", + "2 med 0.45 0.45 105 0\n", + "3 mean 0.46 0.46 89 0\n", + "4 q3 0.48 0.48 75 0\n", + "5 whishi 0.52 0.52 95 0\n" + ] + } + ], + "source": [ + "# we can also use the `only_label` argument to select only the\n", + "# samples from the normal class\n", + "print(pd.DataFrame.from_records(boxplot_stats(max_anom_score_per_image, labels, only_label=0)))\n", + "# notice the labels are all 0 now" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " statistic value nearest index label\n", + "0 whislo 0.42 0.42 90 0\n", + "1 q1 0.52 0.52 95 0\n", + "2 med 0.65 0.65 17 1\n", + "3 mean 0.66 0.66 45 1\n", + "4 q3 0.77 0.77 108 1\n", + "5 whishi 1.00 1.00 22 1\n" + ] + } + ], + "source": [ + "# or we can consider data from both classes (`None` option)\n", + "print(pd.DataFrame.from_records(boxplot_stats(max_anom_score_per_image, labels, only_label=None)))\n", + "# notice that the labels are mixed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cite Us\n", + "\n", + "AUPIMO was developed during Google Summer of Code 2023 (GSoC 2023) with the `anomalib` team from OpenVINO Toolkit.\n", + "\n", + "Our work was accepted to the British Machine Vision Conference 2024 (BMVC 2024).\n", + "\n", + "```bibtex\n", + "@misc{bertoldo2024aupimo,\n", + " title={{AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance}}, \n", + " author={Joao P. C. Bertoldo and Dick Ameln and Ashwin Vaidya and Samet Akçay},\n", + " year={2024},\n", + " eprint={2401.01984},\n", + " archivePrefix={arXiv},\n", + " primaryClass={cs.CV},\n", + " url={https://arxiv.org/abs/2401.01984}, \n", + "}\n", + "```\n", + "\n", + "Paper on arXiv: [arxiv.org/abs/2401.01984](https://arxiv.org/abs/2401.01984) (accepted to BMVC 2024)\n", + "\n", + "Medium post: [medium.com/p/c653ac30e802](https://medium.com/p/c653ac30e802)\n", + "\n", + "Official repository: [github.com/jpcbertoldo/aupimo](https://github.com/jpcbertoldo/aupimo) (numpy-only API and numba-accelerated versions available)\n", + "\n", + "GSoC 2023 page: [summerofcode.withgoogle.com/archive/2023/projects/SPMopugd](https://summerofcode.withgoogle.com/archive/2023/projects/SPMopugd)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "anomalib-dev", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/700_metrics/pimo_viz.svg b/notebooks/700_metrics/pimo_viz.svg new file mode 100644 index 0000000000..962c95f463 --- /dev/null +++ b/notebooks/700_metrics/pimo_viz.svg @@ -0,0 +1,619 @@ + + + +image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +PIMO + + + + + +i + + + + + +AUPIMO + + + + + +i + + +Recall(t) + + +Upper bound + + +Lower bound + + +FPR(t) + + + + +Recall(t) + +Upper bound + +Lower bound + +t [anomaly score threholds] + +Transparent(never detected as anomalous) + +RED(always detectedas anomalous) + +JET(AUPIMO range) + + diff --git a/notebooks/README.md b/notebooks/README.md index 36976a6855..2f93aa5c8c 100644 --- a/notebooks/README.md +++ b/notebooks/README.md @@ -51,3 +51,10 @@ To install Python, Git and other required tools, [OpenVINO Notebooks](https://gi | ---------------------- | ------------------------------------------------------------------------------------------------------------- | ----- | | Dobot Dataset Creation | [501a_training](/notebooks/500_use_cases/501_dobot/501a_training_a_model_with_cubes_from_a_robotic_arm.ipynb) | | | Training | [501b_training](/notebooks/500_use_cases/501_dobot/501b_inference_with_a_robotic_arm.ipynb) | | + +## 7. Metrics + +| Notebook | GitHub | Colab | +| ----------------------------------------------- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| AUPIMO basics | [701a_aupimo](/notebooks/700_metrics/701a_aupimo.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/anomalib/blob/main/notebooks/700_metrics/701a_aupimo.ipynb) | +| AUPIMO representative samples and visualization | [701b_aupimo_advanced_i](/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/anomalib/blob/main/notebooks/700_metrics/701b_aupimo_advanced_i.ipynb) |