-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_regression.py
188 lines (161 loc) · 6.51 KB
/
train_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import time
import os
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
import torch.utils.data as td
import pandas as pd
from models import SegNet
from utils import *
from PIL import Image
import torchvision as tv
import numpy as np
def train(epoch, train_loader, model, optimizer):
# Ensure dropout layers are in train mode
model.train()
batch_time = ExpoAverageMeter()
losses = ExpoAverageMeter()
start = time.time()
train_loss = []
# Batches
for i_batch, (x, y) in enumerate(train_loader):
# Set device options
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
y_hat = model(x)
y = y.view(-1,1).float()
loss = torch.sqrt((y_hat - y).pow(2).mean())
loss.backward()
optimizer.step()
# Keep track of metrics
losses.update(loss.item())
batch_time.update(time.time() - start)
start = time.time()
# Print status
train_loss.append(losses.val)
if i_batch % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch, i_batch, len(train_loader),
batch_time=batch_time,
loss=losses))
return train_loss
def valid(val_loader, model):
model.eval() # eval mode (no dropout or batchnorm)
batch_time = ExpoAverageMeter()
losses = ExpoAverageMeter()
start = time.time()
with torch.no_grad():
# Batches
for i_batch, (x, y) in enumerate(val_loader):
# Set device options
x = x.to(device)
y = y.to(device)
y_hat = model(x)
y = y.view(-1,1).float()
loss = torch.sqrt((y_hat - y).pow(2).mean())
# Keep track of metrics
losses.update(loss.item())
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i_batch % print_freq == 0:
print('Validation: [{0}/{1}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(i_batch, len(val_loader),
batch_time=batch_time,
loss=losses))
return losses.avg
class SDODataset(td.Dataset):
def __init__(self, root_dir, mode="train", image_size=(224, 224)):
super(SDODataset, self).__init__()
self.image_size = image_size
self.mode = mode
self.df = pd.read_csv(root_dir + mode + '/meta_data.csv', sep=",", parse_dates=["start", "end"], index_col="id")
self.image_path = []
self.label = []
self.id = []
for row in self.df.iterrows():
ar_nr, p = row[0].split("_", 1)
img_path = os.path.join(root_dir, mode, ar_nr, p)
for img_name in os.listdir(img_path):
if img_name.endswith('_magnetogram.jpg'):
self.image_path.append(os.path.join(img_path, img_name))
self.label.append(row[1]['peak_flux'])
self.id.append(row[0])
def __len__(self):
return len(self.label)
def __repr__(self):
return "SDODataset(mode={}, image_size={})". \
format(self.mode, self.image_size)
def __getitem__(self, idx):
img_path = self.image_path[idx]
img = Image.open(img_path)
transform = tv.transforms.Compose([
tv.transforms.ToTensor(),
])
x = transform(img)
d = self.label[idx]
return x, np.log(d)
def main():
Dataset = './SDOBenchmark-data-full/'
train_set = SDODataset(Dataset, mode = 'train')
test_set = SDODataset(Dataset, mode = 'test')
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True,
pin_memory=True, drop_last=True)
val_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False,
pin_memory=True, drop_last=True)
# Load pretrained autoencoder network
label_nbr = 1
################################
from config import autoencoder_checkpoint
autoencoder_checkpoint = 'models1'
checkpoint = '{}/BEST_checkpoint.tar'.format(autoencoder_checkpoint) # model checkpoint
print('load pretrained model: ' + str(checkpoint))
# Load model
checkpoint = torch.load(checkpoint)
AEpretrain = checkpoint['model']
del checkpoint
from models import AutoencoderRegression
model = AutoencoderRegression(AEpretrain)
################################
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
# Use appropriate device
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
best_loss = 100000
epochs_since_improvement = 0
state, start_epoch = load_checkpoint(mode = 'regression')
if start_epoch != 0:
print("Load from checkpoint epoch: ", start_epoch - 1)
model = model.to(device)
optimizer = state['optimizer']
del state
# Epochs
for epoch in range(start_epoch, epochs):
# Decay learning rate if there is no improvement for 8 consecutive epochs, and terminate training after 20
if epochs_since_improvement == 20:
break
if epochs_since_improvement > 0 and epochs_since_improvement % 8 == 0:
adjust_learning_rate(optimizer, 0.8)
# One epoch's training
train_loss = train(epoch, train_loader, model, optimizer)
# One epoch's validation
val_loss = valid(val_loader, model)
print('\n * LOSS - {loss:.3f}\n'.format(loss=val_loss))
# Check if there was an improvement
is_best = val_loss < best_loss
best_loss = min(best_loss, val_loss)
if not is_best:
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
# Save checkpoint
save_checkpoint(epoch, model, optimizer, val_loss, is_best, mode = 'regression',train_loss = train_loss)
print('train finished')
if __name__ == '__main__':
main()