-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimization.py
178 lines (153 loc) · 6.09 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import json
import sqlite3
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use("Agg") # Set backend to non-interactive
from strategies.EmaCrossAdx.EmaCrossAdx import EmaCrossAdx
from strategies.RSISimple.RSISimple import RSISimple
from strategies.SeriousMACD.SeriousMACD import SeriousMACD
from strategies.SmaCrossAdx.SmaCrossAdx import SmaCrossAdx
from strategies.SuperTrend.SuperTrend import SuperTrend
from strategies.HullmaCrossAdx.HullmaCrossAdx import HullmaCrossAdx
from strategies.GoldDigger.GoldDigger import GoldDigger
from backtesting import Backtest
import seaborn as sns
from backtesting.lib import plot_heatmaps
from utils.data_conversion import convert_to_namedtuple
from utils.price_fetcher import get_price_data
DB = None
def init_db():
global DB
try:
DB = sqlite3.connect("./strategy_tester.db")
DB.row_factory = sqlite3.Row
except sqlite3.Error as e:
print(f"Error connecting to database: {e}")
return e
def run_optimization(selected_options):
init_db()
print("Running optimization with the following options:")
print(f"Strategy: {selected_options['strategy']}")
print(f"Tickers: {selected_options['tickers']}")
print(f"Timeframe set: {selected_options['timeframe_set']}")
optimization_set = {
key: value
for key, value in selected_options["optimization_set"].items()
if key != "name"
}
# New code to iterate through optimization_set["variables"]
modified_optimization_set = {}
param_keys = []
for key, value in optimization_set.get("variables", {}).items():
# Modify the value as needed
modified_optimization_set[key] = range(
value["from"], value["to"], value["step"]
)
param_keys.append(key)
modified_optimization_set["maximize"] = optimization_set["config"]["maximize"]
modified_optimization_set["method"] = optimization_set["config"]["method"]
modified_optimization_set["max_tries"] = optimization_set["config"]["max_tries"]
modified_optimization_set["random_state"] = optimization_set["config"][
"random_state"
]
modified_optimization_set["return_heatmap"] = optimization_set["config"][
"return_heatmap"
]
timeframes = selected_options["timeframe_set"]["timeframes"]
START_DATE = timeframes[0]["start"]
END_DATE = timeframes[0]["end"]
FREQUENCY = timeframes[0]["interval"]
if selected_options["strategy"]["name"] == "MaCross":
strategy = SmaCrossAdx
strategy_id = 1
elif selected_options["strategy"]["name"] == "SeriousMACD":
strategy = SeriousMACD
strategy_id = 2
elif selected_options["strategy"]["name"] == "SuperTrend":
strategy = SuperTrend
strategy_id = 3
elif selected_options["strategy"]["name"] == "RSISimple":
strategy = RSISimple
strategy_id = 4
elif selected_options["strategy"]["name"] == "EmaCrossAdx":
strategy = EmaCrossAdx
strategy_id = 5
elif selected_options["strategy"]["name"] == "HullmaCrossAdx":
strategy = HullmaCrossAdx
strategy_id = 6
elif selected_options["strategy"]["name"] == "GoldDigger":
strategy = GoldDigger
strategy_id = 7
print("Selected options:")
print(selected_options)
print("Optimization config:")
print(modified_optimization_set)
for ticker in selected_options["tickers"]:
print(f"Running optimization for ticker: {ticker}")
df_prices = get_price_data(ticker, START_DATE, END_DATE, FREQUENCY)
bt = Backtest(
df_prices, strategy, cash=100_000, commission=0, exclusive_orders=True
)
stats, heatmap = bt.optimize(**modified_optimization_set)
optimization_results = {
"best_params": {key: getattr(stats._strategy, key) for key in param_keys},
"metrics": {
"Return [%]": stats["Return [%]"],
"Sharpe Ratio": stats["Sharpe Ratio"],
"Max. Drawdown [%]": stats["Max. Drawdown [%]"],
"Win Rate [%]": stats["Win Rate [%]"],
},
}
opt_params = json.dumps(stats._strategy, default=str)
opt_params_dict = json.loads(opt_params)
opt_params_namedtuple = convert_to_namedtuple(opt_params_dict)
optimization_results = {
"best_params": {
key: getattr(opt_params_namedtuple, key) for key in param_keys
},
"metrics": {
"Return [%]": stats["Return [%]"],
"Sharpe Ratio": stats["Sharpe Ratio"],
"Max. Drawdown [%]": stats["Max. Drawdown [%]"],
"Win Rate [%]": stats["Win Rate [%]"],
},
}
filename = f"reports/optimization/optimization_results_{ticker}_{strategy_id}_{START_DATE}_{END_DATE}_{FREQUENCY}"
cursor = DB.cursor()
cursor.execute(
"""
INSERT INTO optimization_slice (
optimization_session_id,
strategy_id,
ticker,
start,
end,
interval,
optimization_results
) VALUES (?, ?, ?, ?, ?, ?, ?)
""",
(
selected_options["optimization_session"]["id"],
strategy_id,
ticker,
START_DATE,
END_DATE,
FREQUENCY,
json.dumps(optimization_results),
),
)
DB.commit()
# Move plotting to a separate function and handle it safely
if selected_options["backtest_plot"]:
try:
# Create figure for seaborn plot
plt.figure()
sns.heatmap(heatmap.unstack())
plt.savefig(f"{filename}_heatmap.png")
plt.close()
# Use backtesting's plot_heatmaps
plot_heatmaps(heatmap, agg="mean", plot_width=1200, filename=filename)
except Exception as e:
print(f"Error generating plots: {e}")
finally:
plt.close("all") # Ensure all figures are closed