-
Notifications
You must be signed in to change notification settings - Fork 13
/
train.py
49 lines (37 loc) · 1.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from stable_baselines3 import PPO, A2C
import os
from EldenEnv import EldenEnv
def train(CREATE_NEW_MODEL, config):
print("🧠 Training will start soon. This can take a while to initialize...")
TIMESTEPS = 1 #Learning rate multiplier.
HORIZON_WINDOW = 500 #Lerning rate number of steps before updating the model. ~2min
'''Creating folder structure'''
model_name = "PPO-1"
if not os.path.exists(f"models/{model_name}/"):
os.makedirs(f"models/{model_name}/")
if not os.path.exists(f"logs/{model_name}/"):
os.makedirs(f"logs/{model_name}/")
models_dir = f"models/{model_name}/"
logdir = f"logs/{model_name}/"
model_path = f"{models_dir}/PPO-1"
print("🧠 Folder structure created...")
'''Initializing environment'''
env = EldenEnv(config)
print("🧠 EldenEnv initialized...")
'''Creating new model or loading existing model'''
if CREATE_NEW_MODEL:
model = PPO('MultiInputPolicy',
env,
tensorboard_log=logdir,
n_steps=HORIZON_WINDOW,
verbose=1,
device='cpu') #Set training device here.
print("🧠 New Model created...")
else:
model = PPO.load(model_path, env=env)
print("🧠 Model loaded...")
'''Training loop'''
while True:
model.learn(total_timesteps=TIMESTEPS, reset_num_timesteps=False, tb_log_name="PPO", log_interval=1)
model.save(f"{models_dir}/PPO-1")
print(f"🧠 Model updated...")