-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluator_modified.py
599 lines (521 loc) · 21.4 KB
/
evaluator_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import collections
import itertools
import random
import lm_eval.metrics
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
from lm_eval.utils import positional_deprecated, run_task_tests
from lm_eval.models.gpt2 import HFLM
import numpy as np
import transformers
@positional_deprecated
def simple_evaluate_chunk(
model,
chunk_num,
model_args=None,
tasks=[],
num_fewshot=0,
batch_size=None,
max_batch_size=None,
device=None,
no_cache=False,
limit=None,
bootstrap_iters=100000,
description_dict=None,
check_integrity=False,
decontamination_ngrams_path=None,
write_out=False,
output_base_path=None,
reduce='loglikelihood_test'
):
"""Instantiate and evaluate a model on a list of tasks.
:param model: Union[str, LM]
Name of model, transformers.PreTrainedModel object, or LM object, see lm_eval.models.get_model
:param model_args: Optional[str]
String arguments for each model class, see LM.create_from_arg_string.
Ignored if `model` argument is a LM object.
:param tasks: list[Union[str, Task]]
List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
:param num_fewshot: int
Number of examples in few-shot context
:param batch_size: int or str, optional
Batch size for model
:param max_batch_size: int, optional
Maximal batch size to try with automatic batch size detection
:param device: str, optional
PyTorch device (e.g. "cpu" or "cuda:0") for running models
:param no_cache: bool
Whether or not to cache
:param limit: int or float, optional
Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
:param bootstrap_iters:
Number of iterations for bootstrap statistics
:param description_dict: dict[str, str]
Dictionary of custom task descriptions of the form: `task_name: description`
:param check_integrity: bool
Whether to run the relevant part of the test suite for the tasks
:param write_out: bool
If True, write details about prompts and logits to json for all tasks
:param output_base_path: str, optional
Directory to which detailed eval info will be written. Defaults to present working dir.
:return
Dictionary of results
"""
random.seed(1234)
np.random.seed(1234)
assert tasks != [], "No tasks specified"
if isinstance(model, str):
if model_args is None:
model_args = ""
lm = lm_eval.models.get_model(model).create_from_arg_string(
model_args,
{
"batch_size": batch_size,
"max_batch_size": max_batch_size,
"device": device,
},
)
elif isinstance(model, transformers.PreTrainedModel):
lm = lm_eval.models.get_model("hf-causal")(
pretrained=model,
batch_size=batch_size,
max_batch_size=max_batch_size,
)
no_cache = True
else:
assert isinstance(model, lm_eval.base.LM)
lm = model
if not no_cache:
lm = lm_eval.base.CachingLM(
lm,
"lm_cache/"
+ (model if isinstance(model, str) else model.model.config._name_or_path)
+ "_"
+ model_args.replace("=", "-").replace(",", "_").replace("/", "-")
+ ".db",
)
task_dict = lm_eval.tasks.get_task_dict(tasks)
if check_integrity:
run_task_tests(task_list=tasks)
results = evaluate(
lm=lm,
task_dict=task_dict,
chunk_num=chunk_num,
num_fewshot=num_fewshot,
limit=limit,
bootstrap_iters=bootstrap_iters,
description_dict=description_dict,
decontamination_ngrams_path=decontamination_ngrams_path,
write_out=write_out,
output_base_path=output_base_path,
reduce=reduce
)
# add info about the model and few shot config
model_name = None
if isinstance(model, str):
model_name = model
elif isinstance(model, transformers.PreTrainedModel):
model_name = "pretrained=" + model.config._name_or_path
results["config"] = {
"model": model_name,
"model_args": model_args,
"num_fewshot": num_fewshot,
"batch_size": batch_size,
"batch_sizes": list(lm.batch_sizes.values())
if hasattr(lm, "batch_sizes")
else [],
"device": device,
"no_cache": no_cache,
"limit": limit,
"bootstrap_iters": bootstrap_iters,
"description_dict": description_dict,
}
return results
@positional_deprecated
def full_evaluate(
model,
model_args=None,
tasks=[],
num_fewshot=0,
batch_size=None,
max_batch_size=None,
device=None,
no_cache=False,
limit=None,
bootstrap_iters=100000,
description_dict=None,
check_integrity=False,
decontamination_ngrams_path=None,
write_out=False,
output_base_path=None,
reduce=None
):
"""Instantiate and evaluate a model on a list of tasks.
:param model: Union[str, LM]
Name of model, transformers.PreTrainedModel object, or LM object, see lm_eval.models.get_model
:param model_args: Optional[str]
String arguments for each model class, see LM.create_from_arg_string.
Ignored if `model` argument is a LM object.
:param tasks: list[Union[str, Task]]
List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
:param num_fewshot: int
Number of examples in few-shot context
:param batch_size: int or str, optional
Batch size for model
:param max_batch_size: int, optional
Maximal batch size to try with automatic batch size detection
:param device: str, optional
PyTorch device (e.g. "cpu" or "cuda:0") for running models
:param no_cache: bool
Whether or not to cache
:param limit: int or float, optional
Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
:param bootstrap_iters:
Number of iterations for bootstrap statistics
:param description_dict: dict[str, str]
Dictionary of custom task descriptions of the form: `task_name: description`
:param check_integrity: bool
Whether to run the relevant part of the test suite for the tasks
:param write_out: bool
If True, write details about prompts and logits to json for all tasks
:param output_base_path: str, optional
Directory to which detailed eval info will be written. Defaults to present working dir.
:return
Dictionary of results
"""
random.seed(1234)
np.random.seed(1234)
assert tasks != [], "No tasks specified"
if isinstance(model, str):
if model_args is None:
model_args = ""
lm = lm_eval.models.get_model(model).create_from_arg_string(
model_args,
{
"batch_size": batch_size,
"max_batch_size": max_batch_size,
"device": device,
},
)
elif isinstance(model, transformers.PreTrainedModel):
lm = lm_eval.models.get_model("hf-causal")(
pretrained=model,
batch_size=batch_size,
max_batch_size=max_batch_size,
)
no_cache = True
else:
assert isinstance(model, lm_eval.base.LM)
lm = model
if not no_cache:
lm = lm_eval.base.CachingLM(
lm,
"lm_cache/"
+ (model if isinstance(model, str) else model.model.config._name_or_path)
+ "_"
+ model_args.replace("=", "-").replace(",", "_").replace("/", "-")
+ ".db",
)
task_dict = lm_eval.tasks.get_task_dict(tasks)
if check_integrity:
run_task_tests(task_list=tasks)
results = evaluate(
lm=lm,
task_dict=task_dict,
chunk_num=None,
num_fewshot=num_fewshot,
limit=0.2,
bootstrap_iters=bootstrap_iters,
description_dict=description_dict,
decontamination_ngrams_path=decontamination_ngrams_path,
write_out=write_out,
output_base_path=output_base_path,
reduce=reduce
)
# add info about the model and few shot config
model_name = None
if isinstance(model, str):
model_name = model
elif isinstance(model, transformers.PreTrainedModel):
model_name = "pretrained=" + model.config._name_or_path
results["config"] = {
"model": model_name,
"model_args": model_args,
"num_fewshot": num_fewshot,
"batch_size": batch_size,
"batch_sizes": list(lm.batch_sizes.values())
if hasattr(lm, "batch_sizes")
else [],
"device": device,
"no_cache": no_cache,
"limit": limit,
"bootstrap_iters": bootstrap_iters,
"description_dict": description_dict,
}
return results
decontaminate_suffix = "_decontaminate"
@positional_deprecated
def evaluate(
lm,
task_dict,
chunk_num,
provide_description=None,
num_fewshot=0,
limit=None,
bootstrap_iters=100000,
description_dict=None,
decontamination_ngrams_path=None,
write_out=False,
output_base_path=None,
reduce='loglikelihood_test'
):
"""Instantiate and evaluate a model on a list of tasks.
:param lm: obj
Language Model
:param task_dict: dict[str, Task]
Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
:param provide_description: bool
Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
:param num_fewshot: int
Number of examples in few-shot context
:param limit: int, optional
Limit the number of examples per task (only use this for testing)
:param bootstrap_iters:
Number of iterations for bootstrap statistics
:param description_dict: dict[str, str]
Dictionary of custom task descriptions of the form: `task_name: description`
:param write_out: bool
If True, write all prompts, logits and metrics to json for offline analysis
:param output_base_path: str, optional
Directory to which detailed eval info will be written. Defaults to present working dir
:return
Dictionary of results
"""
# TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces
# TODO: todo: implement proper description-providing system
assert not provide_description # not implemented.
if provide_description is not None:
# nudge people to not specify it at all
print(
"WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
)
decontaminate = decontamination_ngrams_path is not None
task_dict_items = [
(name, task)
for name, task in task_dict.items()
if (task.has_validation_docs() or task.has_test_docs())
]
results = collections.defaultdict(dict)
versions = collections.defaultdict(dict)
requests = collections.defaultdict(list)
requests_origin = collections.defaultdict(list)
overlaps = collections.defaultdict(list) # {task_name: contaminated_docs}
gold_field = {
'piqa' : 'gold',
'winogrande' : 'answer',
'arc_easy' : 'gold',
'arc_challenge' : 'gold',
'hellaswag' : 'gold',
'boolq' : 'label'
}
# If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
# memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
# over-engineering is bad (or we could make it write the requests to disk and then read them back out again
# - probably using an sqlite db because of all the moving parts we have
# TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
docs = {}
write_out_info = {}
docs_for_decontamination = collections.defaultdict(list)
# get lists of each type of request
for task_name, task in task_dict_items:
versions[task_name] = task.VERSION
# default to test doc, fall back to val doc if validation unavailable
# TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
if task.has_test_docs():
task_doc_func = task.test_docs
task_set = "test" # Required for caching in the decontamination
elif task.has_validation_docs():
task_set = "val" # Required for caching in the decontamination
task_doc_func = task.validation_docs
else:
raise RuntimeError("Task has neither test_docs nor validation_docs")
# deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
task_docs = list(task_doc_func())
rnd = random.Random()
rnd.seed(42)
rnd.shuffle(task_docs)
print(f"Task: {task_name}; number of docs: {len(task_docs)}")
if write_out:
prompt_details = []
description = (
description_dict[task_name]
if description_dict and task_name in description_dict
else ""
)
if limit is not None:
limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
if(chunk_num is not None):
lower_bound = int(chunk_num*limit)
upper_bound = int(lower_bound + limit)
else:
lower_bound = int(1*limit)
upper_bound = len(task_docs) - 1
print(f"From index {lower_bound} to index {upper_bound}")
for doc_id, doc in enumerate(itertools.islice(task_docs, lower_bound, upper_bound)):
if decontaminate and task.should_decontaminate():
docs_for_decontamination[(task_name, task_set)].append(
task.doc_to_decontamination_query(doc)
)
docs[(task_name, doc_id)] = doc
ctx = task.fewshot_context(
doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
)
reqs = task.construct_requests(doc, ctx)
if write_out:
prompt_details.append({"doc_id": doc_id})
# print the prompt for the first few documents
if doc_id < 1:
print(
f"Task: {task_name}; document {doc_id}; context prompt (starting on next line):\n{ctx}\n(end of prompt on previous line)"
)
print("Requests:", reqs)
if not isinstance(reqs, (list, tuple)):
reqs = [reqs]
for i, req in enumerate(reqs):
requests[req.request_type].append(req)
# i: index in requests for a single task instance
# doc_id: unique id that we can get back to a doc using `docs`
requests_origin[req.request_type].append((i, task_name, doc, doc_id))
if write_out:
prompt_details[-1][f"prompt_{i}"] = "".join(
(map(lambda x: "".join(x), req.args))
)
if write_out:
write_out_info[task_name] = prompt_details
# Compare all tasks/sets at once to ensure a single training set scan
if decontaminate:
from lm_eval.decontamination.decontaminate import get_train_overlap
print("Finding train/test overlap, please wait...")
overlaps = get_train_overlap(
docs_for_decontamination, decontamination_ngrams_path, limit
)
# all responses for each (task, doc)
process_res_queue = collections.defaultdict(list)
# execute each type of request
for reqtype, reqs in requests.items():
# TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
# only in index. We could implement some kind of caching, but that would be more of a band-aid
# solution. we could also implement some kind of auto-grouping here;
# they should end up next to each other.
print("Running", reqtype, "requests")
resps = getattr(lm, reqtype)([req.args for req in reqs])
resps = [
x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
]
for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
process_res_queue[(task_name, doc_id)].append((i, resp))
if write_out:
write_out_info[task_name][doc_id][f"logit_{i}"] = resp
task = task_dict[task_name]
if isinstance(task, lm_eval.base.MultipleChoiceTask):
write_out_info[task_name][doc_id]["truth"] = doc["gold"]
elif isinstance(task, lm_eval.tasks.winogrande.Winogrande):
write_out_info[task_name][doc_id]["truth"] = task.answer_to_num[
doc["answer"]
]
else:
write_out_info[task_name][doc_id]["truth"] = task.doc_to_target(doc)
vals = collections.defaultdict(list)
# unpack results and sort back in order and return control to Task
for (task_name, doc_id), requests in process_res_queue.items():
requests.sort(key=lambda x: x[0])
requests = [x[1] for x in requests]
task = task_dict[task_name]
doc = docs[(task_name, doc_id)]
if reduce=='loglikelihood_test':
ll_gold = requests[int(doc[gold_field[task_name]])-1]
incorrect_requests = [req for req in requests if req != ll_gold]
if incorrect_requests:
ll_incorrect_max = max(incorrect_requests)
else:
ll_incorrect_max = ll_gold
metrics = {}
metrics['llt'] = ll_gold - ll_incorrect_max
else:
metrics = task.process_results(doc, requests)
for metric, value in metrics.items():
vals[(task_name, metric)].append(value)
if write_out:
write_out_info[task_name][doc_id][metric] = str(value)
# Re-use the evaluation for the decontaminated set by just ignoring the overlaps
if decontaminate and task_name in overlaps:
if doc_id not in overlaps[task_name]:
vals[(task_name, metric + decontaminate_suffix)].append(value)
# aggregate results
for (task_name, metric), items in vals.items():
task = task_dict[task_name]
if reduce=='loglikelihood_test':
real_metric = 'acc'
else:
real_metric = metric # key when looking up the metric with task.aggregation
if metric.endswith(decontaminate_suffix):
real_metric = metric.replace(
decontaminate_suffix, ""
) # decontaminated still uses the same metric
results[task_name][metric] = task.aggregation()[real_metric](items)
# hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
# so we run them less iterations. still looking for a cleaner way to do this
stderr = lm_eval.metrics.stderr_for_metric(
metric=task.aggregation()[real_metric],
bootstrap_iters=min(bootstrap_iters, 1000)
if metric in ["bleu", "chrf", "ter"]
else bootstrap_iters,
)
if stderr is not None:
results[task_name][metric + "_stderr"] = stderr(items)
if write_out:
import json
import pathlib
output_base_path = (
pathlib.Path(output_base_path)
if output_base_path is not None
else pathlib.Path(".")
)
try:
output_base_path.mkdir(parents=True, exist_ok=False)
except FileExistsError:
pass
for task_name, _ in task_dict_items:
with open(
output_base_path.joinpath(f"{task_name}_write_out_info.json"),
"w",
encoding="utf8",
) as fp:
json.dump(write_out_info[task_name], fp, indent=4, ensure_ascii=False)
return {"results": dict(results), "versions": dict(versions)}
def make_table(result_dict):
"""Generate table of results."""
from pytablewriter import MarkdownTableWriter, LatexTableWriter
md_writer = MarkdownTableWriter()
latex_writer = LatexTableWriter()
md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
values = []
for k, dic in result_dict["results"].items():
version = result_dict["versions"][k]
for m, v in dic.items():
if m.endswith("_stderr"):
continue
if m + "_stderr" in dic:
se = dic[m + "_stderr"]
values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
else:
values.append([k, version, m, "%.4f" % v, "", ""])
k = ""
version = ""
md_writer.value_matrix = values
latex_writer.value_matrix = values
# todo: make latex table look good
# print(latex_writer.dumps())
return md_writer.dumps()