-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecomposer.py
165 lines (136 loc) · 4.95 KB
/
decomposer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import sys
sys.path.append('../')
import numpy as np
import pandas as pd
import torch.nn as nn
from torch.utils.data import DataLoader
import transformers
from transformers import (
AutoModelForCausalLM,
BitsAndBytesConfig,
AutoTokenizer,
DataCollatorForSeq2Seq,
)
from datasets import load_dataset
from preprocess import get_combination
from preprocess import get_bookcorpus
import argparse
from tqdm import tqdm
from layers import ModuleInjection
from lm_eval import evaluator
from preprocess import *
import json
from dataset_ppl import get_wikitext2
parser = argparse.ArgumentParser("main")
parser.add_argument("--layers", type=str, default="o_proj,q_proj,v_proj,k_proj,gate_proj,up_proj,down_proj")
parser.add_argument("--dataset", type=str, default="piqa")
parser.add_argument("--batch_size", type=int, default=512)
parser.add_argument("--seq_len", type=int, default=128)
parser.add_argument("--log_path", type=str, default="surgical_logs.txt")
parser.add_argument("--algo", type=str, default="eigen")
parser.add_argument("--weights_name", type=str, default="decomposed_model_mistral_combination.pt")
parser.add_argument("--model", type=str, default="mistralai/Mistral-7B-v0.1")
args = parser.parse_args()
with open(args.log_path, "a") as file:
file.write(json.dumps(str(args)))
file.write("\n")
base_model = AutoModelForCausalLM.from_pretrained(
args.model,
torch_dtype=torch.float32,
device_map="cpu",
trust_remote_code=True,
# load_in_8bit=True,
)
decomposable_layers_base = []
max_rank = []
for name, l in base_model.named_modules():
if isinstance(l, nn.Linear):
max_rank.append(int(l.weight.data.shape[0]*l.weight.data.shape[1]/(l.weight.data.shape[0]+l.weight.data.shape[1])))
for eligible_layer in args.layers:
if eligible_layer in name:
tokens = name.strip().split(".")
layer = base_model
for t in tokens[:-1]:
if not t.isnumeric():
layer = getattr(layer, t)
else:
layer = layer[int(t)]
decomposable_layers_base.append([layer, tokens[-1]])
break
tokenizer = AutoTokenizer.from_pretrained(
args.model,
trust_remote_code=True,
torch_dtype="auto",
)
tokenizer.pad_token = tokenizer.eos_token
data_collator = DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
)
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=args.seq_len,
padding='max_length',
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < 2048
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = data_point["text"]
tokenized_full_prompt = tokenize(full_prompt)
return tokenized_full_prompt
# To run on Specific Dataset
if args.dataset == 'wikitext2':
dataset = get_wikitext2(tokenizer, seq_len = args.seq_len )
dataloader = DataLoader(dataset, batch_size = args.batch_size)
#To run on Commonsense Reasoning Datasets
elif args.dataset != 'combination' and args.dataset != 'bookcorp':
dataset, _, _ = get_dataset(args.dataset)
dataset = dataset.map(generate_and_tokenize_prompt)
dataset = dataset.select_columns(["input_ids", "attention_mask"])
dataloader = DataLoader(dataset, collate_fn=data_collator, batch_size=args.batch_size)
print("Done Loading Data")
#To run on Book Corpora
elif args.dataset == 'bookcorp':
data = get_bookcorpus(tokenizer, args.batch_size, args.seq_len)
#To run on Comb data
elif args.dataset == 'combination':
dataset, _, _ = get_combination(args.batch_size)
dataset = dataset.map(generate_and_tokenize_prompt)
dataset = dataset.select_columns(["input_ids", "attention_mask"])
dataloader = DataLoader(dataset, collate_fn=data_collator, batch_size=args.batch_size)
else:
print("Dataset Not Supported")
exit()
for index in tqdm(range(len(decomposable_layers_base))):
parent_layer, last_token = decomposable_layers_base[index]
setattr(
parent_layer,
last_token,
ModuleInjection.make_decomposable(
getattr(parent_layer, last_token), max_rank[index], args.algo
),
)
for _, param in base_model.named_parameters():
param.requires_grad = False
if(args.dataset == 'wikitext2'):
for inputs in dataloader:
_ = base_model(inputs)
break
elif(args.dataset!='bookcorp'):
for inputs in dataloader:
inputs = {k: inputs[k].to(base_model.device) for k in inputs}
_ = base_model(**inputs)
break
else:
_ = base_model(data)
torch.save(base_model.half(),args.weights_name)