-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
381 lines (307 loc) · 15.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import argparse
import os
import yaml
import sys
from pathlib import Path
import random
import copy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset
from torch.optim import Adam
from sklearn.model_selection import KFold, train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import brier_score_loss, roc_auc_score
from pycox.evaluation import EvalSurv
from tqdm import tqdm, trange
import wandb
from umap import UMAP
from lifelines.utils import concordance_index
from monai.utils import set_determinism
from utils import *
from rnc_loss import RnCEHRLoss, ProgRnCLoss
from hecktor_dataset import HecktorDataset2Images
from torch.optim.lr_scheduler import StepLR, CosineAnnealingLR
def load_config(config_path: str) -> dict:
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
return config
def set_seeds(seed: int) -> None:
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
set_determinism(seed)
torch.cuda.manual_seed_all(seed)
def init_wandb(config: dict) -> None:
os.environ["WANDB_API_KEY"] = config['wandb_api_key']
wandb.login()
wandb.init(project=config['wandb_project'], name=config['run_name'])
def _pair_rank_mat(mat: np.ndarray, idx_durations: np.ndarray, events: np.ndarray, dtype: str = 'float32') -> np.ndarray:
n = len(idx_durations)
for i in range(n):
dur_i = idx_durations[i]
ev_i = events[i]
if ev_i == 0:
continue
for j in range(n):
dur_j = idx_durations[j]
ev_j = events[j]
if (dur_i < dur_j) or ((dur_i == dur_j) and (ev_j == 0)):
mat[i, j] = 1
return mat
def pair_rank_mat(idx_durations: np.ndarray, events: np.ndarray, dtype: str = 'float32') -> np.ndarray:
"""Indicator matrix R with R_ij = 1{T_i < T_j and D_i = 1}.
So it takes value 1 if we observe that i has an event before j and zero otherwise.
Arguments:
idx_durations {np.array} -- Array with durations.
events {np.array} -- Array with event indicators.
Keyword Arguments:
dtype {str} -- dtype of array (default: {'float32'})
Returns:
np.array -- n x n matrix indicating if i has an observerd event before j.
"""
idx_durations = idx_durations.reshape(-1)
events = events.reshape(-1)
n = len(idx_durations)
mat = np.zeros((n, n), dtype=dtype)
mat = _pair_rank_mat(mat, idx_durations, events, dtype)
return mat
def validate(model: nn.Module, loader: DataLoader, device: torch.device, loss_fn: nn.Module, umap: bool = False, surv_curve_samples: int = None, return_bs_auc: bool = False, args: dict = None) -> dict:
model.eval()
meter_loss = AverageMeter()
list_embs = []
list_uc = []
list_preds = []
list_duration = []
list_event = []
with torch.no_grad():
for x_val, y_val in loader:
if isinstance(x_val, torch.Tensor):
x_val = x_val.to(device)
elif isinstance(x_val, list):
x_val = [t.to(device) for t in x_val]
else:
raise ValueError(f"x_val should be a tensor or a list of tensors (currently it is {type(x_val)})")
if isinstance(loader.dataset, HecktorDataset2Images):
x_val = (
torch.cat((x_val[0], x_val[1]), dim=0),
x_val[-1].repeat(2,1),
)
if len(y_val.shape) == 1:
y_val = y_val[:, None]
y_val = y_val.repeat(2,1)
y_val = y_val.to(device)
embs, y_pred = model(x_val)
list_preds.append(y_pred.cpu().numpy())
list_embs.append(embs[y_val[:,1]==1].cpu().numpy())
list_uc.append(y_val[:,2][y_val[:,1]==1].cpu().numpy())
list_duration.append(y_val[:,2].detach().cpu().numpy())
list_event.append(y_val[:,1].cpu().numpy())
if args['model_name'] == "deephit":
rank_mat = pair_rank_mat(y_val[:,0], y_val[:,1])
meter_loss.update(val=loss_fn(y_pred, y_val[:,0].long(), y_val[:,1], torch.tensor(rank_mat).to(device)), n=len(x_val))
else:
meter_loss.update(val=loss_fn(y_pred, y_val[:,0].long(), y_val[:,1]), n=len(x_val))
embs = np.concatenate(list_embs)
uc = np.concatenate(list_uc)
preds = np.concatenate(list_preds)
durations = np.concatenate(list_duration)
events = np.concatenate(list_event)
pred_risk = mtlr_risk(torch.tensor(preds))
ci_harrell = concordance_index(durations, -pred_risk, events)
surv = model.interpolate(10).predict_surv_df(preds)
out = {'loss': meter_loss.avg}
ev = EvalSurv(surv, durations, events, censor_surv='km')
ci = ev.concordance_td('antolini')
out['ci_antolini'] = ci
out['ci_harrell'] = ci_harrell
if return_bs_auc:
surv = surv.loc[surv.index < max(durations)]
eval_times = [surv.index[round(0.25*len(surv))], surv.index[round(0.5*len(surv))], surv.index[round(0.75*len(surv))]]
filtered_surv = surv.loc[eval_times]
bs = brier_score_at_times(durations, filtered_surv.T.values, events, eval_times)
auc = roc_auc_at_times(durations, filtered_surv.T.values, events, eval_times)
out['eval_times'] = eval_times
out['bs'] = bs
out['auc'] = auc
if umap:
ump = HelperUMAP(embs, n_components=2, init='random', random_state=0)
umap_plot = ump(uc)
out['umap'] = umap_plot
if surv_curve_samples is not None:
out['surv_curve'] = get_surv_curve(surv.iloc[:, :5])
return out
def train(train_loader: DataLoader, val_loader: DataLoader, model: nn.Module, loss_fn: nn.Module, optimizer: torch.optim.Optimizer, device: torch.device, args: dict) -> tuple:
reset_parameters(model)
model.to(device)
if args['loss_rnc_type'] == 'RnCEHRLoss':
loss_rnc_fn = RnCEHRLoss(temperature=args['temperature'], label_diff='l1', feature_sim='l2').to(device)
elif args['loss_rnc_type'] == 'ProgRnCLoss':
loss_rnc_fn = ProgRnCLoss(temperature=args['temperature'], label_diff='l1_vec', feature_sim='l2').to(device)
scheduler = StepLR(optimizer, step_size=20, gamma=0.5)
pbar = trange(args['epochs'], desc='Training', leave=True)
best_loss = float('inf')
best_ci = float('-inf')
best_weights = None
for epoch in pbar:
model.train()
loss_meter = AverageMeter()
for x_train, y_train in train_loader:
y_train = y_train.to(device)
if isinstance(x_train, torch.Tensor):
x_train = x_train.to(device)
elif isinstance(x_train, list):
x_train = [t.to(device) for t in x_train]
else:
raise ValueError(f"x_train should be a tensor or a list of tensors (currently it is {type(x_train)})")
if isinstance(train_loader.dataset, HecktorDataset2Images):
x_train = (
torch.cat((x_train[0], x_train[1]), dim=0),
x_train[-1].repeat(2,1),
)
if len(y_train.shape) == 1:
y_train = y_train[:, None]
y_train = y_train.repeat(2,1)
embs, y_pred = model(x_train)
optimizer.zero_grad()
if args['model_name'] == "deephit":
rank_mat = pair_rank_mat(y_train[:,0], y_train[:,1])
loss = loss_fn(y_pred, y_train[:,0].long(), y_train[:,1], torch.tensor(rank_mat).to(device))
else:
loss = loss_fn(y_pred, y_train[:,0].long(), y_train[:,1])
if args['loss_rnc'] > 0:
if isinstance(loss_rnc_fn, RnCEHRLoss):
if sum(y_train[:,1].detach()==1) > 2:
loss_rnc = loss_rnc_fn(embs[y_train[:,1]==1], y_train[:,2][y_train[:,1]==1][:,None])
loss = loss + loss_rnc * args['loss_rnc']
elif isinstance(loss_rnc_fn, ProgRnCLoss):
if sum(y_train[:,1].detach()==1) > 2:
loss_rnc = loss_rnc_fn(embs, y_train[:,2], y_train[:,1])
loss = loss + loss_rnc * args['loss_rnc']
loss.backward()
optimizer.step()
loss_meter.update(val=loss.item(), n=len(x_train))
pbar.set_description(f"[epoch {epoch+1:4}/{args['epochs']}]")
if (epoch+1) % args['validation_epoch'] == 0:
model.eval()
val_out = validate(model, val_loader, device, loss_fn, umap=False, args=args)
val_loss = val_out['loss']
val_ci = val_out['ci_antolini']
val_ci_harrell = val_out['ci_harrell']
if args['wandb']:
log_dict = {
'Epoch': epoch+1,
'Val_loss': val_loss.item(),
'Val_CI_Antolini': val_ci,
'Val_CI_Harrell': val_ci_harrell,
'Train_loss': loss_meter.avg,
}
wandb.log(log_dict)
pbar.set_postfix_str(f"Training loss: {loss_meter.avg:.4f}. Validation loss: {val_loss:.4f}")
if val_loss < best_loss:
best_loss = val_loss
if val_ci_harrell > best_ci:
best_ci = val_ci_harrell
best_weights = copy.deepcopy({k: v.cpu() for k, v in model.state_dict().items()})
scheduler.step()
model.eval()
return model, best_weights
def process(config: dict) -> None:
# Prepare data
data = preprocess_data(config)
if data["type"] == "EHR&Image":
print("Both 'EHR' and 'Image' are present.")
config['in_features'] = data['train'][0][0][-1].shape[0] # number of clinical features
train_ds = data['train']
val_ds = data['val']
elif data["type"] == "EHR":
print("Only 'EHR' is present.")
config['in_features'] = data['train'][0].shape[1]
x_train, y_train = data['train']
x_val, y_val = data['val']
x_train = torch.tensor(x_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32).permute(1,0)
x_val = torch.tensor(x_val, dtype=torch.float32)
y_val = torch.tensor(y_val, dtype=torch.float32).permute(1,0)
train_ds = TensorDataset(x_train, y_train)
val_ds = TensorDataset(x_val, y_val)
else:
raise ValueError("Neither 'EHR' nor 'Image' are present. Check your data.")
config['data_type'] = data["type"]
# Define model and loss
model, loss_fn = define_model_and_loss(config)
# Define optimizer
optimizer_name = getattr(torch.optim, config['optimizer'])
optimizer = optimizer_name(model.parameters(), lr=config['lr'], weight_decay=config['weight_decay'])
train_loader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=False, drop_last=True,
pin_memory=True, num_workers=config['num_workers'])
val_loader = DataLoader(val_ds, batch_size=config['batch_size'], shuffle=False, drop_last=False,
pin_memory=True, num_workers=config['num_workers'])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"The model is using {device} for training!")
model, best_weights = train(train_loader, val_loader, model, loss_fn, optimizer, device, config)
torch.save({'weights': best_weights, 'lbl_cuts': config['lbl_cuts'], 'max_duration': config['max_duration']}, f'./submission_weights/model_{config["run_name"]}_fold_{config["fold"]}.pt')
if config['wandb']:
log_dict = {}
model.load_state_dict(best_weights)
out = validate(model, train_loader, device, loss_fn, umap=True, surv_curve_samples=5, return_bs_auc=True, args=config)
train_loss, train_umap, train_ci, train_surv_curve, train_ci_ant = out['loss'], out['umap'], out['ci_harrell'], out['surv_curve'], out['ci_antolini']
train_eval_times, train_bs, train_auc = out['eval_times'], out['bs'], out['auc']
out = validate(model, val_loader, device, loss_fn, umap=True, surv_curve_samples=5, return_bs_auc=True, args=config)
val_loss, val_umap, val_ci, val_surv_curve, val_ci_ant = out['loss'], out['umap'], out['ci_harrell'], out['surv_curve'], out['ci_antolini']
val_eval_times, val_bs, val_auc = out['eval_times'], out['bs'], out['auc']
log_dict.update({
'(Best) Val loss': val_loss.item() if isinstance(val_loss, torch.Tensor) else val_loss,
'(Best) Val CI_harrel': val_ci,
'(Best) Val CI_antolini': val_ci_ant,
'(Best) Val Surv Curve': wandb.Image(val_surv_curve),
'(Best) Val UMAP': wandb.Image(val_umap),
'(Best) Val Eval Times': wandb.Table(columns=list(range(len(val_eval_times))), data=[val_eval_times]),
'(Best) Val Brier Score': wandb.Table(columns=list(range(len(val_eval_times))), data=[val_bs]),
'(Best) Val AUC': wandb.Table(columns=list(range(len(val_eval_times))), data=[val_auc]),
'(Best) Train loss': train_loss.item() if isinstance(train_loss, torch.Tensor) else train_loss,
'(Best) Train CI': train_ci,
'(Best) Train Surv Curve': wandb.Image(train_surv_curve),
'(Best) Train UMAP': wandb.Image(train_umap),
})
wandb.log(log_dict)
def main() -> None:
parser = argparse.ArgumentParser(description='SurvRNC Training Script')
parser.add_argument('--config', type=str, default='configs/train.yaml', help='Path to the config file')
parser.add_argument('--override', nargs=argparse.REMAINDER, help='Override config parameters. Example: --optimizer SGD')
args = parser.parse_args()
# Load config file
config = load_config(args.config)
# Override config with command-line arguments if provided
if args.override:
override_args = args.override
for override in override_args:
key, value = override.split('=')
# Attempt to cast to int or float
try:
value = int(value)
except ValueError:
try:
value = float(value)
except ValueError:
value = value.lower() if value.lower() in ['true', 'false'] else value
keys = key.split('.')
cfg = config
for k in keys[:-1]:
cfg = cfg.setdefault(k, {})
cfg[keys[-1]] = value
# Set seeds
set_seeds(config['seed'])
# Initialize WandB if enabled
if config['wandb']:
init_wandb(config)
# Proceed with training using the loaded configuration
process(config)
if __name__ == "__main__":
main()