This repository was archived by the owner on Feb 4, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlr_multiplier.py
63 lines (51 loc) · 2.41 KB
/
lr_multiplier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from keras.optimizers import Optimizer
from keras.utils import get_custom_objects
class LearningRateMultiplier(Optimizer):
"""Optimizer wrapper for per layer learning rate.
This wrapper is used to add per layer learning rates by
providing per layer factors which are multiplied with the
learning rate of the optimizer.
Note: This is a wrapper and does not implement any
optimization algorithm.
# Arguments
optimizer: An optimizer class to be wrapped.
lr_multipliers: Dictionary of the per layer factors. For
example `optimizer={'conv_1/kernel':0.5, 'conv_1/bias':0.1}`.
If for kernel and bias the same learning rate is used, the
user can specify `optimizer={'conv_1':0.5}`.
**kwargs: The arguments for instantiating the wrapped optimizer
class.
"""
def __init__(self, optimizer, lr_multipliers=None, **kwargs):
self._class = optimizer
self._optimizer = optimizer(**kwargs)
self._lr_multipliers = lr_multipliers or {}
def _get_multiplier(self, param):
for k in self._lr_multipliers.keys():
if k in param.name:
return self._lr_multipliers[k]
def get_updates(self, loss, params):
mult_lr_params = {p: self._get_multiplier(p) for p in params
if self._get_multiplier(p)}
base_lr_params = [p for p in params if self._get_multiplier(p) is None]
updates = []
base_lr = self._optimizer.lr
for param, multiplier in mult_lr_params.items():
self._optimizer.lr = base_lr * multiplier
updates.extend(self._optimizer.get_updates(loss, [param]))
self._optimizer.lr = base_lr
updates.extend(self._optimizer.get_updates(loss, base_lr_params))
return updates
def get_config(self):
config = {'optimizer': self._class,
'lr_multipliers': self._lr_multipliers}
base_config = self._optimizer.get_config()
return dict(list(base_config.items()) + list(config.items()))
def __getattr__(self, name):
return getattr(self._optimizer, name)
def __setattr__(self, name, value):
if name.startswith('_'):
super(LearningRateMultiplier, self).__setattr__(name, value)
else:
self._optimizer.__setattr__(name, value)
get_custom_objects().update({'LearningRateMultiplier': LearningRateMultiplier})