forked from rodrigoalmeida94/DragonMasterProject
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.R
232 lines (194 loc) · 8.84 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Rodrigo Almeida, Ping
# Team Dragon Masters
# 23/01/2017
# ---- setup ----
# Installs necessary requirements
print('---- Starting setup ----')
if(!require(raster) | !require(tools) | !require(rgdal) | !require(gdalUtils) | !require(rworldmap) | !require(cleangeo) | !require(gdata)| !require(leaflet)| !require(htmltools)| !require(RColorBrewer)) {
install.packages(c('raster','tools','rgdal','gdalUtils','rworldmap', 'rworldxtra', 'cleangeo','gdata','leaflet', 'htmltools', 'RColorBrewer'))
}
# Libraries needed
library(raster)
library(tools)
library(rgdal)
library(gdalUtils)
library(rworldmap)
library(cleangeo)
library(gdata)
library(leaflet)
library(htmlwidgets)
library(RColorBrewer)
# Changes temp dir to location with space, at least 5 GB free
rasterOptions(tmpdir="data/temp/")
rasterOptions(maxmemory=1e+12)
# Source files
source('R/summary_data.R')
source('R/ndvi_annual_mean.R')
source('R/hazards_sum.R')
source('R/calc_index.R')
source('R/normalization.R')
print('---- Ending setup ----')
# ---- downloads ----
print('---- Starting downloads ----')
# Downloads the hazards and PM2.5 datasets from SEDAC
system('Bash/./sedac_haz_pm25.sh')
# Runs the bash script that downloads the monthly MODIS NDVI data
system('Bash/./modis_ndvi.sh')
# Download GECON data xls
download.file('http://gecon.yale.edu/sites/default/files/Gecon40_post_final.xls', 'data/Gecon40_post_final.xls')
print('---- Ending downloads ----')
# ---- read-files ----
print('---- Starting read-files ----')
# Loads the hazards dataset into memory
hazards_files <- list.files('data', pattern = 'haz_?.*\\.asc', full.names = T)
for (haz in hazards_files){
assign(basename(file_path_sans_ext(haz)),raster(haz))
a <- get(basename(file_path_sans_ext(haz)))
a@data@names <- basename(file_path_sans_ext(haz))
}
rm(haz,hazards_files,a)
# Loads NDVI monthly datasest into memory
ndvi_files <- list.files('data', pattern = 'MOD13C2*', full.names = T)
ndvi.months <- c("01_2016", "02_2016", "03_2016", "04_2016", "05_2016", "06_2016", "07_2016", "08_2016", "09_2016", "10_2016", "11_2016", "12_2016")
ndvi <- vector("list", length(ndvi.months))
ndvi_reliability <- vector("list", length(ndvi.months))
names(ndvi) <- ndvi.months
names(ndvi_reliability) <- ndvi.months
for (i in 1:12){
# NDVI is subdataset 1
ndvi[i] <- raster(get_subdatasets(ndvi_files[i])[1])
ndvi[[i]]@data@names <- paste0('NDVI',ndvi.months[i])
# Reliability is subdataset 13 (0, 0 is good -4)
ndvi_reliability[i] <- raster(get_subdatasets(ndvi_files[i])[13])
ndvi_reliability[[i]]@data@names <- paste0('NDVI_reliability',ndvi.months[i])
}
rm(ndvi_files, ndvi.months, i)
# Cleans data according to reliability, calculates the annual mean
ndvi_mean <- ndvi_annual_mean(ndvi, ndvi_reliability)
rm(ndvi,ndvi_reliability)
# Loads polution dataset into memory
annualpm25 <- raster('data/annualpm25/annualpm25.tif')
# Loads GECON data from XLS file
gecon <- read.xls('data/Gecon40_post_final.xls',sheet = 1, header = T)
gecon <- data.frame(gecon$LAT, gecon$LONGITUDE, gecon$PPP2005_40, gecon$MER2005_40)
gecon$gecon.PPP2005_40 <- as.numeric(paste(gecon$gecon.PPP2005_40))
gecon$gecon.MER2005_40 <- as.numeric(paste(gecon$gecon.MER2005_40))
gecon$gecon.LAT <- gecon$gecon.LAT +0.5
gecon$gecon.LONGITUDE <- gecon$gecon.LONGITUDE + 0.5
coordinates(gecon) <- ~gecon.LONGITUDE + gecon.LAT
gridded(gecon) <- T
gecon@proj4string <- CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0")
gecon_mer <- raster(gecon["gecon.MER2005_40"])
gecon_ppp <- raster(gecon["gecon.PPP2005_40"])
gecon_mer@data@names <- 'gecon_mer'
gecon_ppp@data@names <- 'gecon_ppp'
writeRaster(gecon_mer,'data/gecon_mer.tif','GTiff')
writeRaster(gecon_ppp,'data/gecon_ppp.tif','GTiff')
rm(gecon)
print('---- Ending read-files ----')
# ---- files-info ----
print('---- Starting files-info ----')
# Gets all files into a vector that is passed to the data_summary func
all_files <- c(annualpm25, gecon_mer, gecon_ppp, haz_cyclone, haz_drought, haz_earthquake, haz_flood, haz_landslide, haz_volcano, ndvi_mean)
data_summary <- summary_data(all_files)
rm(all_files)
# Get the template raster object and the projection string - WGS84, 2.5 minute grid
minx <- min(unlist(data_summary[,'resx']))
miny <- min(unlist(data_summary[,'resy']))
proj <- data_summary[which(data_summary[,'resx']==minx,data_summary[,'resy']==miny),]
proj_str <- proj[1,'projargs'][[1]]
set_raster <- proj[1,'raster'][[1]]
rm(proj)
print('---- Ending files-info ----')
# ---- file-preprocessing ----
print('---- Starting file-preprocessing ----')
print('---- This will take a while, grab a cup of coffee! :) ----')
# Select all objects that have a different projection, nedd to add the different extents
to_reproj <- data_summary[which(data_summary[,'projargs']!=proj_str|data_summary[,'resx']!=minx|data_summary[,'resy']!=miny|data_summary[,'ymin']!=set_raster@extent@ymin),'raster']
rm(data_summary, proj_str, minx,miny)
# Reprojects and resamples the objects - changed tmp dir in the beginning, at least 5 GB free in dir
for(r in to_reproj){
projectRaster(r,set_raster,filename = paste0('data/r_',r@data@names,'.tif'), method = 'ngb', overwrite = T)
print(paste(r,'was reprojected!'))
}
rm(r,to_reproj, set_raster)
# Reads reprojected files into memory
r_files <- list.files('data', pattern = 'r_', full.names = T)
for (r in r_files){
assign(basename(file_path_sans_ext(r)),raster(r))
}
rm(r,r_files)
# Adds aditional information
r_annualpm25@data@unit <- 'microg*m^-3'
r_gecon_mer@data@unit <- 'Billions US dollars'
r_gecon_ppp@data@unit <- 'Billions US dollars'
# Gets continental (countries) boundaries
world <- getMap()
world <- spTransform(world, r_ndvi_mean@crs)
simpleWorld <- gUnionCascaded(clgeo_Clean(world))
print('---- Ending file-preprocessing ----')
# ---- index-calculation ----
print('---- Starting index-calculation ----')
# Calculates the hazard component, (sum of all layers)
haz_comp <- hazards_sum(r_haz_cyclone, haz_drought, r_haz_earthquake, r_haz_flood, haz_landslide, r_haz_volcano)
writeRaster(haz_comp, 'data/haz_comp.tif', 'GTiff', overwrite =T)
# To run if not from source
haz_comp <- raster('data/haz_comp.tif')
r_ndvi_mean <- raster('data/r_ndvi_mean.tif')
r_gecon_ppp <- raster('data/r_gecon_ppp.tif')
r_gecon_mer <- raster('data/r_gecon_mer.tif')
r_annualpm25 <- raster('data/r_annualpm25.tif')
# Masks and normalizes the data
haz_comp <- normalization(haz_comp)
r_ndvi_mean <- normalization(r_ndvi_mean)
r_gecon_ppp <- normalization(r_gecon_ppp)
r_gecon_mer <- normalization(r_gecon_mer)
r_annualpm25 <- normalization(r_annualpm25)
# Calculates the index, for 5 differente combinations of weights
# Index - Same weight to all
index10101010 <- calc_index(r_ndvi_mean,r_gecon_ppp, haz_comp, r_annualpm25, 1, 1, 1, 1,simpleWorld)
index10101010 <- index10101010*100
writeRaster(index10101010, 'data/index10101010.tif', 'GTiff', overwrite =T, datatype = 'INT2S')
# Index - Greenest
index10050505 <- calc_index(r_ndvi_mean,r_gecon_ppp, haz_comp, r_annualpm25, 1, 0.5, 0.5, 0.5,simpleWorld)
index10050505 <- index10050505*100
writeRaster(index10050505, 'data/index10050505.tif', 'GTiff', overwrite =T, datatype = 'INT2S')
# Index - Richest
index05100505 <- calc_index(r_ndvi_mean,r_gecon_ppp, haz_comp, r_annualpm25, 0.5, 1, 0.5, 0.5,simpleWorld)
index05100505 <- index05100505*100
writeRaster(index05100505, 'data/index05100505.tif', 'GTiff', overwrite =T, datatype = 'INT2S')
# Index - Less hazards
index05051005 <- calc_index(r_ndvi_mean,r_gecon_ppp, haz_comp, r_annualpm25, 0.5, 0.5, 1, 0.5,simpleWorld)
index05051005 <- index05051005*100
writeRaster(index05051005, 'data/index05051005.tif', 'GTiff', overwrite =T, datatype = 'INT2S')
# Index - Less polution
index05050510 <- calc_index(r_ndvi_mean,r_gecon_ppp, haz_comp, r_annualpm25, 0.5, 0.5, 0.5, 1,simpleWorld)
index05050510 <- index05050510*100
writeRaster(index05050510, 'data/index05050510.tif', 'GTiff', overwrite =T, datatype = 'INT2S')
print('---- Ending index-calculation ----')
# ---- visualization ----
print('---- Starting visualization ----')
source('R/vis.R')
print('---- Ending visualization ----')
# ---- top-countries ----
print('---- Starting top-countries ----')
# Calculate Matrix of Top Countries
source('R/matrix_top.R')
ras_world <- rasterize(world,r_ndvi_mean,as.numeric(world@data$ADMIN),fun=mean,na.rm=T)
same <- matrix_top(index10101010,world,ras_world,10)
greenest <- matrix_top(index10050505,world,ras_world,10)
richest <- matrix_top(index05100505,world,ras_world,10)
less_hazards <- matrix_top(index05051005,world,ras_world,10)
less_polution <- matrix_top(index05050510,world,ras_world,10)
print(same)
print(greenest)
print(richest)
print(less_hazards)
print(polution)
print('---- Ending top-countries ----')
print('---- Safe travels! ;) ----')
#index10101010 <- raster('data/index10101010.tif')
#index10050505 <- raster('data/index10050505.tif')
#index05100505 <- raster('data/index05100505.tif')
#index05051005 <- raster('data/index05051005.tif')
#index05050510 <- raster('data/index05050510.tif')