-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
208 lines (179 loc) · 8.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import warnings
warnings.filterwarnings('ignore')
import argparse
import datetime
import sys
import networkx as nx
import pandas as pd
import numpy as np
import glob
import datetime
import pickle
import copy
import torch
from captum.attr import IntegratedGradients
from cutils import load_data, write_results, to_inductive
from models.models import *
if __name__ == '__main__':
""" Train and evaluate models with the following steps:
1. Initialize model (LR, RF, MLP, GCN, GCN_MPs, GCN_MP)'
2. Load PE specified by binary string (one-hot, node2vec, lap-eig, random-walk, net-feat)
3. Load dataset specified by train and test binary string
4. Train and log progress, including best performance
5. Compute empirical baseline for Integrated Gradients
6. Compute and log IG values for individual features and feature types
"""
parser = argparse.ArgumentParser(description='Load model, loss, and evaluation arguments.')
parser.add_argument('--model',nargs='?',default='MLP',type=str)
parser.add_argument('--pe', nargs='?', type=str, default='01111')
parser.add_argument('--dropout', nargs='?', type=float, default=0.5)
parser.add_argument('--hidden', nargs='?', type=int, default=64)
parser.add_argument('--num', nargs='?', type=int, default=2)
parser.add_argument('--doms', nargs='?', type=int, default=1000)
parser.add_argument('--train', nargs='?', type=str, default='100')
parser.add_argument('--test', nargs='?', type=str, default='100')
parser.add_argument('--epochs', nargs='?', type=int, default=4)
parser.add_argument('--iters', nargs='?', type=int, default=3001)
parser.add_argument('--rep', nargs='?', type=int, default=100)
parser.add_argument('--gamma', nargs='?', type=float, default=.4)
parser.add_argument('--metric', nargs='?', type=str, default='ratio')
parser.add_argument('--exp', nargs='?', type=int, default=0)
parser.add_argument('--norm', nargs='?', type=int, default=0)
parser.add_argument('--lr', nargs='?', type=float, default=1e-3)
parser.add_argument('--l1', nargs='?', type=float, default=0.)
parser.add_argument('--l2', nargs='?', type=float, default=0.)
parser.add_argument('--device', nargs='?', type=str, default='cuda')
args = parser.parse_args()
print()
print(args)
args.subset = ['comp_train',
'russia_train',
'china_train',
'iran_train',
'russia_test',
'china_test',
'iran_test']
MODEL = args.model
PE = args.pe # one-hot, node2vec, lap-eig, random-walk, net-feat
NUM_DOMS = args.doms
WEIGHT = (MODEL in ['GCN1','GCN2'])
data, xdf, index, lims = get_mask_data(args)
sets = (xdf.lab_state + '_' + xdf.lab_set).to_numpy()
xdf.insert(0, 'label', sets)
reset_idx(args, data, xdf)
data=data.to('cpu')
print(f'train,test,val={data.train.sum().item(),data.test.sum().item(),data.val.sum().item()}')
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train.sum()}')
print(f'Training node label rate: {int(data.train.sum()) / data.num_nodes:.2f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')
print()
in_channels = data.num_features
hidden_channels = args.hidden
num_layers = args.num
dropout= args.dropout
out_channels = data.num_classes
if MODEL=='LR':
print(f'model: {MODEL}')
res = np.zeros((args.epochs,3)) # F1_val, F1_test, AUC_test
for i in range(args.epochs):
model, yt, f1v, f1t, auct = LR(args, data, xdf, i)
res[i] = (f1v, f1t, auct)
F1v = (res[:,0].mean(), res[:,0].std())
F1t = (res[:,1].mean(), res[:,1].std())
AUCt = (res[:,2].mean(), res[:,2].std())
write_results(F1v, F1t, AUCt, model, args)
sys.exit(0)
elif MODEL=='RF':
print(f'model: {MODEL}')
res = np.zeros((args.epochs,3)) # F1_val, F1_test, AUC_test
for i in range(args.epochs):
model, yt, f1v, f1t, auct = RF(args, data, xdf, i)
res[i] = (f1v, f1t, auct)
F1v = (res[:,0].mean(), res[:,0].std())
F1t = (res[:,1].mean(), res[:,1].std())
AUCt = (res[:,2].mean(), res[:,2].std())
write_results(F1v, F1t, AUCt, model, args)
sys.exit(0)
elif MODEL=='MLP':
model = MLP(in_channels, hidden_channels, out_channels, args.num, dropout)
elif MODEL=='GCN':
model = GCN(data.num_features, hidden_channels, data.num_classes, args.num, dropout, weighted=False)
elif MODEL=='GCN_MPs':
model = GCN_lw(data.num_features, hidden_channels, data.num_classes, args.num, dropout, weighted=True)
elif MODEL=='GCN_MP':
model = GCN(data.num_features, hidden_channels, data.num_classes, args.num, dropout, weighted=True)
print(model)
print(f'NUM_PARAMS={sum(p.numel() for p in model.parameters())}\n')
print(f'{args.train} -> {args.test}')
model = model.to(args.device)
data = data.to(args.device)
loss_fn = torch.nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=5e-4)
we = data.edge_attr if WEIGHT else None
model_best = [None for _ in range(args.epochs)]
pred_best = [None for _ in range(args.epochs)]
yb = [None for _ in range(args.epochs)]
print('test: ',data.test.sum())
loader = data
res = np.zeros((args.epochs,3))
for epoch in range(args.epochs):
reset_idx(args, data, xdf, epoch)
model.reset_params()
print(f'epoch({epoch}):')
rec_f1 = 0.
rec_auc = 0.
fbest = (0, 0, 0)
for i in range(args.iters):
model.zero_grad()
loss = train_single(model, loader, args, optimizer, loss_fn)
if i%args.rep == 0:
reset_idx(args, data, xdf, epoch)
model.eval()
fval = F1_star(model, data, data.val)
ftest = F1_star(model, data, data.test)
print(f" iter: {i:03d}, Loss: {loss:.5f}, F1(val): {fval[0]:.5f}, F1(test): {ftest[0]:.5f}, AUC(test): {ftest[1]:.5f}, prod(test): {ftest[0]*ftest[1]:.5f}")
if ftest[0]*ftest[1]>rec_f1*rec_auc:
rec_f1 = ftest[0]
rec_auc = ftest[1]
fbest = [fval[0],ftest[0],ftest[1]]
model_best[epoch] = copy.deepcopy(model).cpu()
pred_best[epoch] = model(data.x,data.edge_index).detach().cpu().numpy()
model.train()
print(f'F1(val): {fbest[0]:.5f}, F1(test): {fbest[1]:.5f}, AUC(test): {fbest[2]:.5f}, prod(test): {fbest[1]*fbest[2]:.5f}')
res[epoch] = fbest
f1v,f1t,auct = res[:,0], res[:,1], res[:,2]
prod = np.array(f1t)*np.array(auct)
idx_best = np.argmax(prod)
F1v = (f1v.mean(),f1v.std())
F1t = (f1t.mean(),f1v.std())
AUCt = (auct.mean(),auct.std())
mdl = model_best[idx_best].state_dict()
write_results(F1v, F1t, AUCt, mdl, args)
print()
print(f'F1(val) = {F1v[0]:.5f} \u00b1 {F1v[1]:.5f}')
print(f'F1(test) = {F1t[0]:.5f} \u00b1 {F1t[1]:.5f}')
print(f'AUC(test) = {AUCt[0]:.5f} \u00b1 {AUCt[1]:.5f}')
smask = {sub : (xdf.label==sub).to_numpy() for sub in args.subset}
sdata = {sub : data.x[smask[sub]] for sub in args.subset}
if args.exp:
model.eval()
bmask = torch.abs(model(data.x)-.5).flatten() < 0.1
baseline = data.x[bmask].mean(0)
print(f'model(baseline) = {model(baseline).item():.3e}')
ig = IntegratedGradients(model)
_attr = lambda sub: ig.attribute(sdata[sub], method='gausslegendre', return_convergence_delta=True)
attr = {sub : _attr(sub)[0].mean(0) for sub in args.subset}
if args.exp:
sub_train = [s for s,i in zip(args.subset[1:4],args.train) if int(i)]
sub_val = [s for s,i in zip(args.subset[1:4],args.test) if int(i)]
sub_test = [s for s,i in zip(args.subset[4:],args.test) if int(i)]
sub_baseline = args.subset[0]
print_attr_tex(sub_train)
print_attr_tex(sub_val)
print_attr_tex(sub_test)
print_attr_tex(sub_baseline)