From a433b82cdfb012c5f35d0e6c12dd9b13ac25e190 Mon Sep 17 00:00:00 2001 From: ninehills Date: Sat, 26 Oct 2024 13:43:49 +0000 Subject: [PATCH] [create-pull-request] automated change --- articles/118.md | 45 +-------------------------------------------- 1 file changed, 1 insertion(+), 44 deletions(-) diff --git a/articles/118.md b/articles/118.md index 1cb80bb..069e96b 100644 --- a/articles/118.md +++ b/articles/118.md @@ -205,47 +205,4 @@ TODO ## 7. NUDGE 微调 -参考 进行 NUDGE 微调。 - -```bash -PYTHONPATH="." python eval/evaluate_nudge.py \ - --dataset_path "./data/infgrad_retrieval_data_llm.json" \ - --encoder "checkpoint/bge-small-zh-v1.5-sft" \ - --query_instruction "为这个句子生成表示以用于检索相关文章:" \ - --split "val" \ - --search_top_k 10 \ - --use_nudge_n True -{ - "ndcg_at_1": 0.61147, - "ndcg_at_3": 0.69472, - "ndcg_at_5": 0.71365, - "ndcg_at_10": 0.73091, - "map_at_1": 0.61147, - "map_at_3": 0.67397, - "map_at_5": 0.68447, - "map_at_10": 0.69166, - "recall_at_1": 0.61147, - "recall_at_3": 0.75487, - "recall_at_5": 0.80087, - "recall_at_10": 0.8539, - "precision_at_1": 0.61147, - "precision_at_3": 0.25162, - "precision_at_5": 0.16017, - "precision_at_10": 0.08539, - "mrr_at_1": 0.61147, - "mrr_at_3": 0.67397, - "mrr_at_5": 0.68447, - "mrr_at_10": 0.69166 -} -``` - -ndcg@10 从 0.67399 提升到 0.73091,提升 5.7pp。和全参数微调的效果差不多。 - -NUDGE和全参数微调的对比: - -- 训练时间: NUDGE 的训练其实是训练 Embedding 变换参数。 -- NUDGE 针对 Embedding 后的数据,新增数据需要重复训练。且只影响 corpus embedding,query embedding 不变。 -- SFT 需要重新部署模型。 -- NUDGE 不需要 Negative samples,SFT 如果挖掘的难负样本不好,效果不是特别好。 - - +TODO