forked from ymguo-phy/HydrogenAtom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPeter_Electron_cloud.m
84 lines (75 loc) · 2.96 KB
/
Peter_Electron_cloud.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Spherical Harmonic Function Plot %
% Written by Peter Van Alem %
% Modify by Guo Yiming %
% PHY2009481 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plotting hydrogen orbitals, by Peter van Alem
close all
% quantum numbers
n = 3
l = 2; % 0 <= l < n
m = 1; % -l <= m <= l
% plotting parameters
probabilitydensity = 1e-5;
a = 1; % Bohr radius
% angular part (Condon-Shortley)
SphericalYlm = @(l, m, theta, phi) (-1)^m * sqrt((2 * l + 1) / (4 * pi) * ...
factorial(l - abs(m)) / factorial(l + abs(m))) * ...
AssociatedLegendre(l, m, cos(theta)) .* exp(1i * m * phi);
% real basis
if (m < 0)
Y = @(l, m, theta, phi) sqrt(2) * (-1)^m * imag(SphericalYlm(l, abs(m), theta, phi));
elseif (m == 0)
Y = @(l, m, theta, phi) SphericalYlm(l, m, theta, phi);
else
Y = @(l, m, theta, phi) sqrt(2) * (-1)^m * real(SphericalYlm(l, m, theta, phi));
end
% radial part
R = @(n, l, r) sqrt((2 / (a * n))^3 * factorial(n - l - 1) / (2 * n * factorial(n + l))) .* ...
exp(-r / (a * n)) .* (2 * r / (a * n)).^l * 1 / factorial(n - l - 1 + 2 * l + 1) .* ...
AssociatedLaguerre(n - l - 1, 2 * l + 1, 2 * r / (a * n));
% wave function
psi = @(n, l, m, r, theta, phi) R(n, l, r) .* Y(l, m, theta, phi);
% setting the grid
border = 32;
accuracy = 100;
raster = linspace(-border, border, accuracy);
[x, y, z] = ndgrid(raster, raster, raster);
% conversion Cartesian to spherical coordinates
r = sqrt(x.^2 + y.^2 + z.^2);
theta = acos(z ./ r);
phi = atan2(y, x);
% plot orbital, - and + wave function phase
colors = sign(psi(n, l, m, r, theta, phi));
isosurface(psi(n, l, m, r, theta, phi).^2, probabilitydensity, colors);
colormap([0 0.5 1; 1 0 0])
material dull
title(['$ n = ', num2str(n), ', l = ', num2str(l), ...
', m = ', num2str(m) '$'], 'interpreter', 'latex', 'FontSize', 20)
set(gcf,'color', 'w');
set(gca,'CameraViewAngle', 45, 'Projection', 'perspective');
camzoom(4)
axis equal
axis vis3d;
xticklabels('');
yticklabels('');
zticklabels('');
xlabel('$x$', 'interpreter', 'latex', 'FontSize', 20)
ylabel('$y$', 'interpreter', 'latex', 'FontSize', 20)
zlabel('$z$', 'interpreter', 'latex', 'FontSize', 20)
% functions
function Anm = AssociatedLaguerre(n,m,x)
Anm = 0;
for i = 0 : n
Anm = Anm + factorial(m + n) * nchoosek(m + n, n - i) / factorial(i) * (-x).^i;
end
end
function Alm = AssociatedLegendre(l,m,x)
Alm = 0;
for r = 0 : floor(1/2 * l - 1/2 * abs(m))
Alm = Alm + (-1)^r * nchoosek(l - 2 * r, abs(m)) * nchoosek(l, r) * ...
nchoosek(2 * l - 2 * r, l) * x.^(l - 2 * r - abs(m));
end
Alm = (1 - x.^2).^(abs(m) / 2) .* (factorial(abs(m)) / 2^l * Alm);
end