-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexponential-regression.go
170 lines (153 loc) · 3.25 KB
/
exponential-regression.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
package exponential_regression
import (
"errors"
"github.com/sajari/regression"
"math"
"strconv"
"strings"
)
var (
ErrAlreadyInitialized = errors.New("data has been initialized already")
ErrAlreadyConverted = errors.New("data has been converted already")
ErrNotEnoughData = errors.New("sample size is too small")
ErrLinearRegression = errors.New("error at Linear Regression Level")
ErrInvalidFormula = errors.New("incompilable formula")
ErrNotConverted = errors.New("unconverted data")
ErrNegativeValue = errors.New("negative Value -> No exponential regression possible")
ErrRanAlready = errors.New("regression was run already")
ErrNotRan = errors.New("regression has not been run yet")
)
type Value struct {
x float64
y float64
}
type Input struct {
values []Value
covered []float64
converted bool
}
type Output struct {
a float64
b float64
converted bool
err error
}
type Regression struct {
input Input
initialized bool
ran bool
output Output
}
func (r *Regression) Init (s []struct{
x float64
y float64
}) error {
if r.initialized {
return ErrAlreadyInitialized
}
for i := range s {
err := r.Append(s[i].x, s[i].y)
if err != nil {
return err
}
}
r.initialized = true
return nil
}
func (r *Regression) Append (x,y float64) error {
if r.input.converted {
return ErrAlreadyConverted
}
if y < 0 {
return ErrNegativeValue
}
if r.input.hasAlready(x) {
return nil
}
r.input.values = append(r.input.values, Value{x,y})
r.input.covered = append(r.input.covered, x)
r.initialized = true
return nil
}
func (i *Input) Convert() error {
if len(i.values) < 2 {
return ErrNotEnoughData
}
if i.converted {
return ErrAlreadyConverted
}
for j := range i.values {
temp := i.values[j].y
i.values[j].y = math.Log(temp)
}
i.converted = true
return nil
}
func (o *Output) Convert() error {
if o.converted {
return ErrAlreadyConverted
}
if o.err != nil {
return ErrLinearRegression
}
o.converted = true
o.a, o.b = math.Exp(o.a), math.Exp(o.b)
return nil
}
func FormulaToOutput(formula string) *Output {
members := strings.Split(formula, " ")
if len(members) != 5 {
return &Output{err: ErrInvalidFormula}
}
stringA := members[2]
stringB := members[4][3:]
a, err := strconv.ParseFloat(stringA, 64)
if err != nil {
return &Output{err: ErrInvalidFormula}
}
b, err := strconv.ParseFloat(stringB, 64)
if err != nil {
return &Output{err: ErrInvalidFormula}
}
return &Output{a: a,b: b}
}
func (r *Regression) Convert() error {
return r.input.Convert()
}
func (r *Regression) Run() error {
if !r.input.converted {
return ErrNotConverted
}
if r.ran {
return ErrRanAlready
}
reg := regression.Regression{}
for _, val := range r.input.values {
reg.Train(regression.DataPoint(val.y,[]float64{val.x}))
}
err := reg.Run()
if err != nil {
r.output = Output{err: err}
return ErrLinearRegression
}
r.output = Output{reg.Coeff(0),reg.Coeff(1), false, nil}
r.ran = true
return nil
}
func (i *Input) hasAlready(find float64) bool {
for j := range i.covered {
if i.covered[j] == find {
return true
}
}
return false
}
func (r *Regression) Result() (float64, float64, error) {
if !r.ran {
return 0,0,ErrNotRan
}
if err := r.output.Convert(); err != nil {
return 0,0,err
}
return r.output.a, r.output.b, nil
}