-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
119 lines (96 loc) · 3.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import numpy as np
import pandas as pd
import cv2
from glob import glob
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
def build_model(size, num_classes):
inputs = Input((size, size, 3))
backbone = MobileNetV2(input_tensor=inputs, include_top=False, weights="imagenet")
backbone.trainable = True
x = backbone.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.2)(x)
x = Dense(1024, activation="relu")(x)
x = Dense(num_classes, activation="softmax")(x)
model = tf.keras.Model(inputs, x)
return model
def read_image(path, size):
image = cv2.imread(path, cv2.IMREAD_COLOR)
image = cv2.resize(image, (size, size))
image = image / 255.0
image = image.astype(np.float32)
return image
def parse_data(x, y):
x = x.decode()
num_class = 120
size = 224
image = read_image(x, size)
label = [0] * num_class
label[y] = 1
label = np.array(label)
label = label.astype(np.int32)
return image, label
def tf_parse(x, y):
x, y = tf.numpy_function(parse_data, [x, y], [tf.float32, tf.int32])
x.set_shape((224, 224, 3))
y.set_shape((120))
return x, y
def tf_dataset(x, y, batch=8):
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = dataset.map(tf_parse)
dataset = dataset.batch(batch)
dataset = dataset.repeat()
return dataset
if __name__ == "__main__":
path = "Dog Breed Identification/"
train_path = os.path.join(path, "train/*")
test_path = os.path.join(path, "test/*")
labels_path = os.path.join(path, "labels.csv")
labels_df = pd.read_csv(labels_path)
breed = labels_df["breed"].unique()
print("Number of Breed: ", len(breed))
breed2id = {name: i for i, name in enumerate(breed)}
ids = glob(train_path)
labels = []
for image_id in ids:
image_id = image_id.split("/")[-1].split(".")[0]
breed_name = list(labels_df[labels_df.id == image_id]["breed"])[0]
breed_idx = breed2id[breed_name]
labels.append(breed_idx)
ids = ids[:1000]
labels = labels[:1000]
## Spliting the dataset
train_x, valid_x = train_test_split(ids, test_size=0.2, random_state=42)
train_y, valid_y = train_test_split(labels, test_size=0.2, random_state=42)
## Parameters
size = 224
num_classes = 120
lr = 1e-4
batch = 16
epochs = 10
## Model
model = build_model(size, num_classes)
model.compile(loss="categorical_crossentropy", optimizer=Adam(lr), metrics=["acc"])
# model.summary()
## Dataset
train_dataset = tf_dataset(train_x, train_y, batch=batch)
valid_dataset = tf_dataset(valid_x, valid_y, batch=batch)
## Training
callbacks = [
ModelCheckpoint("model.h5", verbose=1, save_best_only=True),
ReduceLROnPlateau(factor=0.1, patience=5, min_lr=1e-6)
]
train_steps = (len(train_x)//batch) + 1
valid_steps = (len(valid_x)//batch) + 1
model.fit(train_dataset,
steps_per_epoch=train_steps,
validation_steps=valid_steps,
validation_data=valid_dataset,
epochs=epochs,
callbacks=callbacks)