-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain_regularization.py
executable file
·167 lines (126 loc) · 6.34 KB
/
main_regularization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import cv2
import matplotlib.pyplot as plt
import numpy as np
from rdp_alg import rdp
from cal_dist_ang import cal_ang, cal_dist, azimuthAngle
from rotate_ang import Nrotation_angle_get_coor_coordinates, Srotation_angle_get_coor_coordinates
from line_intersection import line, intersection, par_line_dist, point_in_line
def boundary_regularization(img, epsilon=6):
h, w = img.shape[0:2]
# 轮廓定位
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = np.squeeze(contours[0])
# 轮廓精简(DP)
contours = rdp(contours, epsilon=epsilon)
contours[:, 1] = h - contours[:, 1]
# 轮廓规则化
dists = []
azis = []
azis_index = []
# 获取每条边的长度和方位角
for i in range(contours.shape[0]):
cur_index = i
next_index = i+1 if i < contours.shape[0]-1 else 0
prev_index = i-1
cur_point = contours[cur_index]
nest_point = contours[next_index]
prev_point = contours[prev_index]
dist = cal_dist(cur_point, nest_point)
azi = azimuthAngle(cur_point, nest_point)
dists.append(dist)
azis.append(azi)
azis_index.append([cur_index, next_index])
# 以最长的边的方向作为主方向
longest_edge_idex = np.argmax(dists)
main_direction = azis[longest_edge_idex]
# 方向纠正,绕中心点旋转到与主方向垂直或者平行
correct_points = []
para_vetr_idxs = [] # 0平行 1垂直
for i, (azi, (point_0_index, point_1_index)) in enumerate(zip(azis, azis_index)):
if i == longest_edge_idex:
correct_points.append([contours[point_0_index], contours[point_1_index]])
para_vetr_idxs.append(0)
else:
# 确定旋转角度
rotate_ang = main_direction - azi
if np.abs(rotate_ang) < 180/4:
rotate_ang = rotate_ang
para_vetr_idxs.append(0)
elif np.abs(rotate_ang) >= 90-180/4:
rotate_ang = rotate_ang + 90
para_vetr_idxs.append(1)
# 执行旋转任务
point_0 = contours[point_0_index]
point_1 = contours[point_1_index]
point_middle = (point_0 + point_1) / 2
if rotate_ang > 0:
rotate_point_0 = Srotation_angle_get_coor_coordinates(point_0, point_middle, np.abs(rotate_ang))
rotate_point_1 = Srotation_angle_get_coor_coordinates(point_1, point_middle, np.abs(rotate_ang))
elif rotate_ang < 0:
rotate_point_0 = Nrotation_angle_get_coor_coordinates(point_0, point_middle, np.abs(rotate_ang))
rotate_point_1 = Nrotation_angle_get_coor_coordinates(point_1, point_middle, np.abs(rotate_ang))
else:
rotate_point_0 = point_0
rotate_point_1 = point_1
correct_points.append([rotate_point_0, rotate_point_1])
correct_points = np.array(correct_points)
# 相邻边校正,垂直取交点,平行平移短边或者加线
final_points = []
final_points.append(correct_points[0][0])
for i in range(correct_points.shape[0]-1):
cur_index = i
next_index = i + 1 if i < correct_points.shape[0] - 1 else 0
cur_edge_point_0 = correct_points[cur_index][0]
cur_edge_point_1 = correct_points[cur_index][1]
next_edge_point_0 = correct_points[next_index][0]
next_edge_point_1 = correct_points[next_index][1]
cur_para_vetr_idx = para_vetr_idxs[cur_index]
next_para_vetr_idx = para_vetr_idxs[next_index]
if cur_para_vetr_idx != next_para_vetr_idx:
# 垂直取交点
L1 = line(cur_edge_point_0, cur_edge_point_1)
L2 = line(next_edge_point_0, next_edge_point_1)
point_intersection = intersection(L1, L2)
final_points.append(point_intersection)
elif cur_para_vetr_idx == next_para_vetr_idx:
# 平行分两种,一种加短线,一种平移,取决于距离阈值
L1 = line(cur_edge_point_0, cur_edge_point_1)
L2 = line(next_edge_point_0, next_edge_point_1)
marg = par_line_dist(L1, L2)
if marg < 3:
# 平移
point_move = point_in_line(next_edge_point_0[0], next_edge_point_0[1], cur_edge_point_0[0], cur_edge_point_0[1], cur_edge_point_1[0], cur_edge_point_1[1])
final_points.append(point_move)
# 更新平移之后的下一条边
correct_points[next_index][0] = point_move
correct_points[next_index][1] = point_in_line(next_edge_point_1[0], next_edge_point_1[1], cur_edge_point_0[0], cur_edge_point_0[1], cur_edge_point_1[0], cur_edge_point_1[1])
else:
# 加线
add_mid_point = (cur_edge_point_1 + next_edge_point_0) / 2
add_point_1 = point_in_line(add_mid_point[0], add_mid_point[1], cur_edge_point_0[0], cur_edge_point_0[1], cur_edge_point_1[0], cur_edge_point_1[1])
add_point_2 = point_in_line(add_mid_point[0], add_mid_point[1], next_edge_point_0[0], next_edge_point_0[1], next_edge_point_1[0], next_edge_point_1[1])
final_points.append(add_point_1)
final_points.append(add_point_2)
final_points.append(final_points[0])
final_points = np.array(final_points)
final_points[:, 1] = h - final_points[:, 1]
return final_points
ori_img1 = cv2.imread('ori.jpg')
# 中值滤波,去噪
ori_img = cv2.medianBlur(ori_img1, 5)
ori_img = cv2.cvtColor(ori_img, cv2.COLOR_BGR2GRAY)
ret, ori_img = cv2.threshold(ori_img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# 连通域分析
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(ori_img, connectivity=8)
# 遍历联通域
for i in range(1, num_labels):
img = np.zeros_like(labels)
index = np.where(labels==i)
img[index] = 255
img = np.array(img, dtype=np.uint8)
regularization_contour = boundary_regularization(img).astype(np.int32)
cv2.polylines(img=ori_img1, pts=[regularization_contour], isClosed=True, color=(255, 0, 0), thickness=5)
single_out = np.zeros_like(ori_img1)
cv2.polylines(img=single_out, pts=[regularization_contour], isClosed=True, color=(255, 0, 0), thickness=5)
cv2.imwrite('single_out_{}.jpg'.format(i), single_out)
cv2.imwrite('all_out.jpg', ori_img1)