forked from joyrahman/bigTable
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver_post_processing.py
451 lines (350 loc) · 14.4 KB
/
driver_post_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import os
import sys
import glob
import pandas as pd
import numpy as np
from collections import defaultdict
#global vars
debug = True
inputFile = dict()
inputFile['distribution'] = "locust_distribution.csv"
inputFile['requests'] = "locust_requests.csv"
inputFile['containercpu'] = "container-cpu5sRaw.csv"
inputFile['containermemW'] = "container-memW5sRaw.csv"
inputFile['containermemR'] = "container-memR5sRaw.csv"
inputFile['containernetW'] = "container-netW5sRaw.csv"
inputFile['containernetR'] = "container-netR5sRaw.csv"
#filePattern['vm']="vmfile.csv"
result = dict()
def get_latency(dir_name):
result['web'] = 0
result['cart-add'] = 0
result['cart-cart'] = 0
result['cart-update'] = 0
result['catalogue-product'] = 0
result['catalogue-categories'] = 0
result['ratings'] = 0
result['user'] = 0
file_name = os.path.join(dir_name,inputFile['distribution'])
if os.path.isfile(file_name):
df = pd.read_csv(file_name)
else:
return
#print(df)
#"Name","# requests","50%","66%","75%","80%","90%","95%","98%","99%","100%"
for index, row in df.iterrows():
#print(row['Name'],int(row['95%']))
if row['95%']=="N/A":
pass
elif index == 0:
#print("[debug] first row", row['Name'])
result["web"] = int(row['95%'])
elif "cart/cart" in row['Name']:
result["cart-cart"] = int(row['95%']) if int(row['95%']) > result["cart-cart"] else result["cart-cart"]
elif "cart/add" in row['Name']:
result["cart-add"]=int(row['95%']) if int(row['95%']) > result["cart-add"] else result["cart-add"]
elif "cart/update" in row['Name']:
result["cart-update"]=int(row['95%']) if int(row['95%']) > result["cart-update"] else result["cart-update"]
elif "catalogue/categories" in row['Name']:
result["catalogue-categories"] = int(row['95%']) if int(
row['95%']) > result["catalogue-categories"] else result["catalogue-categories"]
elif "catalogue/product" in row['Name']:
result["catalogue-product"] = int(row['95%']) if int(
row['95%']) > result["catalogue-product"] else result["catalogue-product"]
# elif "ratings" in row['Name']:
# result["ratings"]=int(row['95%']) if int(row['95%']) > result["ratings"] else result["ratings"]
elif "user/uniqueid" in row['Name']:
result["user"]=int(row['95%']) if int(row['95%']) > result["user"] else result["user"]
return result
'''
TODO:
disabled for the time being. depending on the requirements, may be used.
needs to changed correspoinding to the columns of the inputFile.
'''
def get_avg_response_time(dir_name):
result['web'] = 0
result['cart-add'] = 0
result['cart-cart'] = 0
result['cart-update'] = 0
result['catalogue-product'] = 0
result['catalogue-categories'] = 0
result['ratings'] = 0
result['user'] = 0
file_name = os.path.join(dir_name, inputFile['requests'])
if os.path.isfile(file_name):
df = pd.read_csv(file_name)
else:
return
#print(df)
#"Name","# requests","50%","66%","75%","80%","90%","95%","98%","99%","100%"
for index, row in df.iterrows():
#print(row['Name'],int(row['95%']))
if row['95%'] == "N/A":
pass
elif index == 0:
#print("[debug] first row", row['Name'])
result["web"] = int(row['95%'])
elif "cart/cart" in row['Name']:
result["cart-cart"] = int(row['95%']) if int(row['95%']
) > result["cart-cart"] else result["cart-cart"]
elif "cart/add" in row['Name']:
result["cart-add"] = int(row['95%']) if int(row['95%']
) > result["cart-add"] else result["cart-add"]
elif "cart/update" in row['Name']:
result["cart-update"] = int(row['95%']) if int(
row['95%']) > result["cart-update"] else result["cart-update"]
elif "catalogue/categories" in row['Name']:
result["catalogue-categories"] = int(row['95%']) if int(
row['95%']) > result["catalogue-categories"] else result["catalogue-categories"]
elif "catalogue/product" in row['Name']:
result["catalogue-product"] = int(row['95%']) if int(
row['95%']) > result["catalogue-product"] else result["catalogue-product"]
# elif "ratings" in row['Name']:
# result["ratings"]=int(row['95%']) if int(row['95%']) > result["ratings"] else result["ratings"]
elif "user/uniqueid" in row['Name']:
result["user"] = int(row['95%']) if int(
row['95%']) > result["user"] else result["user"]
return result
#with open(os.path.abspath(file_name), 'r') as f:
# for line in f:
#for index, row in df.iterrows():
#print(row['c1'], row['c2'])
def get_perf_data(dir_name,start_pos,end_pos):
files = [name for name in glob.glob(dir_name+"/*_perfstat.csv")]
result = dict()
for file in files:
df = pd.read_csv(file)
df = df.loc[start_pos:end_pos+1]
df['cpi'] = df['cycle']/df['instructions']
cpi = (df['cpi'].mean())
llc = (df['LLC-load-misses'].mean())
hostname = df.loc[5]['hostname']
result[hostname] = {'cpi':cpi,'llc':llc,'hostname':hostname}
return result
def get_cpu_vm(dir_name):
files = [name for name in glob.glob(dir_name+"/*_vmfile.csv")]
vm_cpu_avg = dict()
#go over each files
for file in files:
with open(os.path.abspath(file), 'r') as f:
host_name, val = f.readline().split(':')
val = float(val)
vm_cpu_avg[host_name] = val
return vm_cpu_avg
def get_cpu_vm_by_node(dir_name):
#read from kb-w{}{}_vmfile.csv
files = [name for name in glob.glob(dir_name+"/*_vmfile.csv")]
#print("[debug]",files)
vm_cpu_avg = dict()
vm_cpu_avg['node1'] = 0
vm_cpu_avg['node2'] = 0
vm_cpu_avg['node3'] = 0
vm_cpu_avg['node4'] = 0
node1 = set(['kb-w11','kb-w12','kb-w13','kb-w14'])
node2 = set(['kb-w21', 'kb-w22', 'kb-w23', 'kb-w24'])
node3 = set(['kb-w31', 'kb-w32', 'kb-w33', 'kb-w34'])
node4 = set(['kb-w41', 'kb-w42', 'kb-w43', 'kb-w44'])
cntNode1 = 0
cntNode2 = 0
cntNode3 = 0
cntNode4 = 0
#go over each files
for file in files:
with open (os.path.abspath(file),'r') as f:
host_name, val = f.readline().split(':')
val = float(val)
#print("[debug] from file",host_name,val)
if host_name in node1:
vm_cpu_avg['node1'] += val
cntNode1+=1
elif host_name in node2:
vm_cpu_avg['node2'] += val
cntNode2 += 1
elif host_name in node3:
vm_cpu_avg['node3'] += val
cntNode3 += 1
elif host_name in node4:
vm_cpu_avg['node4'] += val
cntNode4 += 1
#do the average
#print("[debug] vm util",vm_cpu_avg)
#print("[debug] count of nodes",cntNode1,cntNode2,cntNode3,cntNode4)
#print (vm_cpu_avg)
try:
vm_cpu_avg['node1'] /= cntNode1*1.0
vm_cpu_avg['node2'] /= cntNode2*1.0
vm_cpu_avg['node3'] /= cntNode3*1.0
vm_cpu_avg['node4'] /= cntNode4*1.0
except:
pass
return vm_cpu_avg
# returns the key name (deployment name) of the pod based on pod name
def get_dep_name(depdict, podName):
for k in depdict.iterkeys():
if k in podName:
if debug:
print("get_dep_name-| Podname: '{}' matches Service: '{}'".format(podName, k)) #debug
return k
# returns avg amount of cpu util (per 5 seconds) (measured in seconds) per pod type
def get_container_metrics(dir_name,start_pos,end_pos, inputFileName):
iresult = {}
iresult['web'] = []
iresult['cart'] = []
iresult['catalogue'] = []
iresult['dispatch'] = []
iresult['mongodb'] = []
iresult['user'] = []
iresult['mysql'] = []
iresult['payment'] = []
iresult['rabbitmq'] = []
iresult['ratings'] = []
iresult['redis'] = []
iresult['shipping'] = []
iresult['stream'] = []
file_name = os.path.join(dir_name,inputFileName)
if debug:
print("Collecting avgs for container data file: {}".format(inputFileName))
if os.path.isfile(file_name):
with open(file_name) as f:
for i, line in enumerate(f):
if i == 0:
continue
data = line.strip("\r\n").split(",")
pod = get_dep_name(iresult, data[0])
iresult[pod].append(get_line_avg(data[1:], start_pos, end_pos))
# all avg's collected, create return list
ret = {}
for k, v in iresult.iteritems():
total = 0
cnt = 0
for i, val in enumerate(v):
if val == "N/A":
continue
total += float(val)
cnt += 1
if total == 0:
ret[k] = "N/A"
else:
# return avg of all pod avgs for specific deployment
ret[k] = float(total/cnt)
if debug:
print("Service avg vals ret: {}".format(ret))
return ret
# inputs is a list of string typed floats
def get_line_avg(inputs, start_i, end_i):
last_entry_cnt = 1
prev_val = 0
diffs = []
for i, entry in enumerate(inputs, start_i-1):
# passed data section, break
if i >= end_i:
break
# if entry is blank, just iterate num entries since last entry
if entry == '':
last_entry_cnt += 1
continue
# if first entry, populate init prev_val & continue
entry = float(entry)
if prev_val == 0:
prev_val = entry
last_entry_cnt = 1
continue
else:
# Incase of error where newer entry is less than prev, data is not valid, return N/A
if prev_val > entry:
if debug:
print("Error in data for processing a pod.")
diffs = []
break
elapsed = (entry - prev_val) / last_entry_cnt
last_entry_cnt = 1
prev_val = entry
diffs.append(elapsed)
if len(diffs) == 0:
return "N/A"
total = 0.0
for ind ,i in enumerate(diffs):
total += i
return total / len(diffs)
def getHorizontalLine():
l = 80
result = "-"*l
return result
def get_average_vm_utilization(vm_cpu, node_list):
sumCpu = 0
count = 0
for node in node_list:
sumCpu += vm_cpu.get(node,0)
count += 1 if vm_cpu.get(node,0) >0 else 0
if count ==0:
return 0
return sumCpu/count
def get_average_perf(perf_data, node_list):
sumCpi = 0
sumLLC = 0
count = 0
for node in node_list:
if node in perf_data.keys():
sumCpi += perf_data[node]['cpi']
sumLLC += perf_data[node]['llc']
count +=1
if count==0:
return 0
sumCpi = sumCpi/count
sumLLC = sumLLC/count
return [sumCpi,sumLLC]
def get_95th_latency(latency, service_name):
pass
def process(dir_name,start_pos,end_pos,mapping):
# actual aggregation
result = {}
#result['test_id'] = dir_name
latency = get_latency(dir_name)
vm_cpu = get_cpu_vm(dir_name)
perf_data = get_perf_data(dir_name,start_pos,end_pos)
print("Current dirName is: {}".format(dir_name)) #debug
container_cpu = get_container_metrics(dir_name, start_pos, end_pos, inputFile["containercpu"])
container_memW = get_container_metrics(dir_name, start_pos, end_pos, inputFile["containermemW"])
container_memR = get_container_metrics(dir_name, start_pos, end_pos, inputFile["containermemR"])
container_netW = get_container_metrics(dir_name, start_pos, end_pos, inputFile["containernetW"])
container_netR = get_container_metrics(dir_name, start_pos, end_pos, inputFile["containernetR"])
for service_name, node_name in mapping.items():
if service_name not in result.keys():
result[service_name] = {}
result[service_name]['vm_util'] = get_average_vm_utilization(vm_cpu,node_name)
result[service_name]['perf_cpi'] = get_average_perf(perf_data,node_name)[0] #first column cpi
result[service_name]['perf_llc'] = get_average_perf(perf_data, node_name)[1] #second column llc
# result[service_name]['container_cpu5s_avg'] = container_cpu[service_name]
if service_name == "cart":
#result['cart-cart'] = {}
#result['cart-add'] = {}
#result['cart-update'] = {}
#result['cart-cart']['95th_latency'] = latency['cart-cart']
#result['cart-add']['95th_latency'] = latency['cart-add']
#result['cart-update']['95th_latency'] = latency['cart-update']
result[service_name]['95th_latency'] = latency['cart-add']
elif service_name == "catalogue":
#result['catalogue-categories'] = {}
#result['catalogue-product'] = {}
#result['catalogue-categories']['95th_latency'] = latency['catalogue-categories']
#result['catalogue-product']['95th_latency'] = latency['catalogue-product']
result[service_name]['95th_latency'] = latency['catalogue-product']
# elif service_name not in latency.keys():
# pass
else:
result[service_name]['95th_latency'] = latency.get(service_name,0)
for svc_name, node in mapping.items():
if svc_name in container_cpu:
result[svc_name]['cont_cpu5s_avg'] = container_cpu[svc_name]
if svc_name in container_memW:
result[svc_name]['cont_memW5s_avg'] = container_memW[svc_name]
if svc_name in container_memR:
result[svc_name]['cont_memR5s_avg'] = container_memR[svc_name]
if svc_name in container_netW:
result[svc_name]['cont_netW5s_avg'] = container_netW[svc_name]
if svc_name in container_netR:
result[svc_name]['cont_netR5s_avg'] = container_netR[svc_name]
test_id = dir_name.split('/')[-1] #last item
return (test_id, result)
if __name__ == "__main__":
process(dir_name=sys.argv[1],start_pos=int(sys.argv[2]),end_pos=int(sys.argv[3]),mapping=sys.argv[4])