-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwogoal_a3c_main.py
154 lines (133 loc) · 6.65 KB
/
twogoal_a3c_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import vizdoom
import argparse
import os
os.environ["OMP_NUM_THREADS"] = "1"
import numpy as np
import torch
import torch.multiprocessing as mp
import env.multigoal_env as grounding_env
from models.models import A3C_LSTM_GA
from twogoal_a3c_train import train
from twogoal_a3c_test import test
from ae.auto_encoder import Auto_Encoder_Model_PReLu224
torch.multiprocessing.set_start_method('spawn', force=True)
parser = argparse.ArgumentParser(description='Instruction Navigation in Vizdoom')
# Environment arguments
parser.add_argument('-l', '--max-episode-length', type=int, default=60, # 30 for single goal, 60 for multiple goals
help='maximum length of an episode (default: 30)')
parser.add_argument('-d', '--difficulty', type=str, default="hard",
help="""Difficulty of the environment,
"easy", "medium" or "hard" (default: hard)""")
parser.add_argument('--living-reward', type=float, default=0,
help="""Default reward at each time step (default: 0,
change to -0.005 to encourage shorter paths)""")
parser.add_argument('--frame-width', type=int, default=300,
help='Frame width (default: 300)')
parser.add_argument('--frame-height', type=int, default=168,
help='Frame height (default: 168)')
parser.add_argument('-v', '--visualize', type=int, default=0,
help="""Visualize the envrionment (default: 0,
use 0 for faster training)""")
parser.add_argument('--sleep', type=float, default=0,
help="""Sleep between frames for better
visualization (default: 0)""")
parser.add_argument('--scenario-path', type=str, default="maps/room.wad",
help="""Doom scenario file to load
(default: maps/room.wad)""")
parser.add_argument('--interactive', type=int, default=0,
help="""Interactive mode enables human to play
(default: 0)""")
parser.add_argument('--all-instr-file', type=str,
# default="data/multigoal_instruction/multigoal_instructions_all.json", # error , fix later
default="data/instructions_all.json",
help="""All instructions file
(default: data/instructions_all.json)""")
parser.add_argument('--train-instr-file', type=str,
default="data/multigoal_instruction/twogoal_instructions_train_no_order.json",
help="""Train instructions file
(default: data/instructions_train.json)""")
parser.add_argument('--test-instr-file', type=str,
default="data/multigoal_instruction/twogoal_instructions_test.json",
help="""Test instructions file
(default: data/instructions_test.json)""")
parser.add_argument('--object-size-file', type=str,
default="data/object_sizes.txt",
help='Object size file (default: data/object_sizes.txt)')
# A3C arguments
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--tau', type=float, default=1.00, metavar='T',
help='parameter for GAE (default: 1.00)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('-n', '--num-processes', type=int, default=4, metavar='N',
help='how many training processes to use (default: 4)')
parser.add_argument('--num-steps', type=int, default=20, metavar='NS',
help='number of forward steps in A3C (default: 20)')
parser.add_argument('--load', type=str, default="0",
help='model path to load, 0 to not reload (default: 0)')
parser.add_argument('-e', '--evaluate', type=int, default=0,
help="""0:Train, 1:Evaluate MultiTask Generalization
2:Evaluate Zero-shot Generalization (default: 0)""")
parser.add_argument('--dump-location', type=str, default="./saved/",
help='path to dump models and log (default: ./saved/)')
# Attention arguments
parser.add_argument('-att', '--attention', type=str, default="fga",
help="""Type of attention,
"fga" or "ga" or "convolve" (default: fga)""")
#AE arguments
parser.add_argument('--auto-encoder', action='store_true',
help='use AE or not')
parser.add_argument('--ae-model-path', type=str, default="./ae/ae_full_prelu_224.pth",
help='pretrained AE model')
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
if __name__ == '__main__':
args = parser.parse_args()
if args.evaluate == 0:
args.use_train_instructions = 1
log_filename = "train.log"
elif args.evaluate == 1:
args.use_train_instructions = 1
args.num_processes = 0
log_filename = "test-MT.log"
elif args.evaluate == 2:
args.use_train_instructions = 0
args.num_processes = 0
log_filename = "test-ZSL.log"
else:
assert False, "Invalid evaluation type"
env = grounding_env.MultiGoal_GroundingEnv(args)
args.vocab_size = len(env.word_to_idx)
args.dictionary = env.word_to_idx
with open("dict.txt", "w") as f:
f.write("{}\n".format(args.dictionary))
ae_model = None
if args.auto_encoder:
ae_model = Auto_Encoder_Model_PReLu224()
# pytorch_total_params = sum(p.numel() for p in ae_model.parameters())
# print(pytorch_total_params)
print('Loading initial weights CDAE from: %s'%(args.ae_model_path))
ae_model.load_state_dict(torch.load(args.ae_model_path, map_location=torch.device('cpu')))
print("Loaded AE model")
shared_model = A3C_LSTM_GA(args, ae_model)
pytorch_total_params = sum(p.numel() for p in shared_model.parameters())
# Load the model
if (args.load != "0"):
shared_model.load_state_dict(
torch.load(args.load, map_location=lambda storage, loc: storage))
shared_model.share_memory()
processes = []
# Start the test thread
p = mp.Process(target=test, args=(args.num_processes, args, shared_model))
p.start()
processes.append(p)
# Start the training thread(s)
for rank in range(0, args.num_processes):
p = mp.Process(target=train, args=(rank, args, shared_model))
p.start()
processes.append(p)
for p in processes:
p.join()