-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFindZerosmAnnular.m
190 lines (156 loc) · 6.15 KB
/
FindZerosmAnnular.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
function [K, Ci] = FindZerosmAnnular(R,N,fhandle,Ci,Refine,R0)
% This file is part of FindZerom, A package to compute the zeros of
% analytic functions Copyright (C) 2018 Benoit Nennig,
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% ========================================================================%
% Package to compute zeros of analytic function
% ========================================================================%
% > Based on Cauchy Integration Method (CIM) or the Argument Principle Method (APM)
% see the documentation for more information and references
% > B. Nennig, E. Perrey-Debain, and M. Ben Tahar. A mode matching method
% for modelling dissipative silencers lined with poroelastic materials
% and containing mean ow. J. Acoust. Soc. Am. , 128(6) :33083320, 2010.
% > C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov. Ecient and
% accurate numerical, analysis of multilayer planar optical waveguides
% in lossy anisotropic media. Opt. Express, 7(8) :260272, 2000.
% > Poles location is not included
% Mandatory input args :
% R : integration radius
% N : number of integration points
% fhandle : is the anonymous function of which the root are sought
% Ci : load contour usefull value for annular computation
% Optionnal input args :
% Refine = 1 ou 0 (local refinement with small circle around each root)
% R0 = 0 si l'origine est en O, coordonée de l'origine sinon
% Mandatory output args :
% K : roots
% Optionnal output args :
% Ci : save of contour usefull value for annular computation
%==========================================================================
% [email protected] 03/2009
%==========================================================================
% constant definition
RShift = 1.02; % percent of increase of the radius when bad convegency
NRefine = 1000; % number of integration points for the local refiement if Refine=1
RefineFraction = .05; % Refine Radius is RefineFraction*root value
% check input args
% Si seulement 4 argugments, pas de rafinement et cercle centré en O
if nargin<4
error('Missing argument...\n')
elseif nargin<=4
R0 = 0;
Refine = 0;
elseif nargin==5
R0 = 0;
end
tic
fprintf('Recherche de zéros par CIM...\n')
ARRET = 1;
while ARRET~= 0
% calcul des Sm
%load('integrande')
Theta = 2*pi*(0:N)/N;
Thetai = 2*pi*(0:Ci.Ni)/Ci.Ni;
% calcul de f'/f
Z = R*exp(1i*Theta) + R0 ;
fp_f = zeros(1,N+1);
ff = fp_f;
% in case of fhadle can ve vectorised, changed here
for ii = 1:(N+1)
ff(ii) = fhandle(Z(ii));
end
% in case where analytic diff is available, change here
fp_f = diffZcircleTheta(ff,Z,9,R0)./ff;
% save integrande fp_f Z
% Int�gartion Nzero (- Npoles)
S0 = ( 1/(2*1i*pi) )*(trapz(Z,fp_f) -trapz(Ci.Zi,Ci.fp_fi));
fprintf(' > Le nombres de zéros est %i\n', S0)
if S0 >20
fprintf(' -> Attention, plus de 20 zéros, la méthode peut être mal conditionnée\n')
fprintf(' utiliser plusieurs courrones...\n')
end
% crit�re d'arret de la boucle
S0cut100 =round(10*S0)/10;
if S0cut100== real(round(S0cut100))
ARRET = 0;
else
ARRET = ARRET+1;
R = R*RShift;
fprintf(' -> Second tour R * %g \n', RShift)
if ARRET > 10
disp('Erreur : Pas assez de points!!')
return
end
end
end
% ------------------------------------------------------------------------%
% détermination ddes coefs et polynome
% ------------------------------------------------------------------------%
% s0 = S0
S0 = round(S0);
S = zeros(1,S0);
% calcul des Sm
% Intégration
if R0==0
for ii=1:S0
% On factorise R^n (quand R est grand ca améliore...)
S(ii) = ( 1/(2*1i*pi) )*( (1i*R^(ii+1))*trapz(Theta, exp(1i*(ii+1)*Theta) .*fp_f) ...
- (1i*Ci.Ri^(ii+1))*trapz(Thetai, exp(1i*(ii+1)*Thetai) .*Ci.fp_fi) );
end
else
% on ne factorise pas Rn (si R0 =/=0)
for ii=1:S0
S(ii) = ( 1/(2*1i*pi) )*(trapz(Z,(Z.^ii).*fp_f) - trapz(Ci.Zi,(Ci.Zi.^ii).*Ci.fp_fi) );
end
end
% calcul des coeff de p
C = CoefC(S0,S);
p = C(end:-1:1);
% racines
K = roots(p);
% display time
fprintf(' > '); toc
% ------------------------------------------------------------------------%
% Rafinement autour des zeros
% ------------------------------------------------------------------------%
if Refine == 1
for ii=1:S0
Nr = NRefine;
Rr = abs(abs(K(ii)))*RefineFraction;
Kr= FindZerosm(Rr,Nr,fhandle,0,K(ii));
% s'il n'a rien trouvé, increase Rr
while (isempty(Kr)==1)
Rr = 2*Rr; Nr = 2*Nr;
Kr= FindZerosm(Rr,Nr,fhandle,0,K(ii));
end
% attention si plusieurs zeros pris dans la tourmente...
K(ii) = Kr(min(abs(Kr)) == abs(Kr));
end
end
% ---------------------------------------------------------------------
% Update and put all the usefull variables in a struct interal Contour struct Ci
Ci.fp_fi = fp_f;
Ci.Zi = Z;
Ci.Ni = N;
Ci.Ri = R;
% save integrande fp_fi Zi Ni Ri
% ---------------------------------------------------------------------
% ------------------------------------------------------------------------%
% trac� des z�ros
% ------------------------------------------------------------------------%
% plot(real(K),imag(K), 'ob','MarkerSize',6)
% plot(Z)
% grid on