-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplay.py
60 lines (52 loc) · 1.81 KB
/
play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from keras.models import Model
from keras.layers import Input, Convolution2D, Flatten, Dense
from keras.layers.advanced_activations import ELU
from keras.layers.recurrent import LSTM
from keras.optimizers import RMSprop
import gym
import ppaquette_gym_super_mario
from model import build_network
from train import ActingAgent
from scipy.misc import imresize
from skimage.color import rgb2gray
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Evaluation of model')
parser.add_argument('--game', default='ppaquette/SuperMarioBros-1-1-v0', help='Name of openai gym environment', dest='game')
parser.add_argument('--evaldir', default=None, help='Directory to save evaluation', dest='evaldir')
parser.add_argument('--model', help='File with weights for model', dest='model')
def main():
args = parser.parse_args()
env = gym.make(args.game)
if args.evaldir:
env.monitor.start(args.evaldir)
agent = ActingAgent(env.action_space.num_discrete_space)
model_file = args.model
agent.load_net.load_weights(model_file)
game = 1
for _ in range(10):
done = False
episode_reward = 0
noops = 0
# init game
observation = env.reset()
agent.init_episode(observation)
# play one game
print('Game #%8d; ' % (game,), end='')
while not done:
env.render()
action = agent.choose_action(observation, eps=0.0)
observation, reward, done, _ = env.step(action)
episode_reward += reward
if action == 0:
noops += 1
else:
noops = 0
if noops > 100:
break
print('Reward %4d; ' % (episode_reward,))
game += 1
if args.evaldir:
env.monitor.close()
if __name__ == "__main__":
main()