forked from mfejzer/tracking_buggy_files
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatastore_utils.py
568 lines (448 loc) · 19 KB
/
datastore_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# -*- coding: utf-8 -*-
"""Utilities to store, save and load features data.
This module is intended to help scripts to be able to easily switch
their output format, provided that they use this module interface to
save data.
Each store format + output format is implemented as a separate class
providing the same API. Because different formats offer different
capabilities and features, some of those classes offer extra methods /
helpers.
There is also helper function to select appropriate class based on
various input (currently the output filename extension).
NOTE: currently you need to have installed modules for all supported
formats, not only for those used.
Usage:
------
>>> from datastore_utils import select_datastore_backend
>>> store = select_datastore_backend(output_filename, category='bug_fixing')
...
>>> store.set_feature(commit, path, feature_name, feature_data)
...
>>> store.print_data(args)
TODO: make interface more generic, removing e.g. args as argument
TODO: use abstract base class equivalent to ensure common API.
"""
from __future__ import print_function
import os
from copy import deepcopy
import pandas as pd
from args_utils import read_json, print_json
class NestedDictStore:
"""Stores data as nested dict, saves it as JSON.
Uses the following data format:
{
"<bugfix commit>": {
"views": {
"<feature category, e.g. 'bug_fixing'>": {
"<pathname>": {
"<feature name, e.g. 'frequency'>": <feature data>,
...
},
...
}
}
}
}
The feature category is set at creation time, in the constructor,
and defaults to 'bug_fixing'. The bugfix commit, the pathname,
and the feature name are given as arguments when storing feature
data:
>>> store.set_feature(<bugfix commit>, <pathname>, <feature name>,
<feature data>)
This storage format coupled with output format means that all data
must be kept in the memory, and it is saved only at time of
calling print_data() method. The disadvantage of this is the
increased memory usage; the advantages are simple and fast adding
entries to the storage, and minimal filesystem access (low I/O).
Parameters
----------
filename : str
Ignored. Is here to present the same API for all storage
methods.
TODO: fix this for consistency, or remove altogeter.
category : str, optional
Category under which to put data in JSON.
data : dict | collections.OrderedDict, optional
Initial data to be stored, defaults to an empty dict.
Specific to NestedDictStore class.
Attributes
----------
data : dict | collections.OrderedDict
Data that is to be stored, in the format described above.
May be updated with `store.update(data)`, for example after
sorting data (and possibly turning it into OrderedDict).
category : str
Category / key under which put data in JSON, shown as
<feature category> in format description. Defaults to
'bug_fixing', which is value specific to the first use
of this module.
"""
def __init__(self, filename, category='bug_fixing', data=None):
## described in class docstring
if data is not None:
self.data = data
else:
self.data = {}
self.category = category
def update(self, data):
"""Update data to value modified outside.
This may be used for example to make this storage save data to JSON
sorted, by passing sorted data (in the form of OrderedDict) here;
the NestedDictStore class doesn't have 'sort' method.
Parameters
----------
data : dict | collections.OrderedDict
New data to be stored in NestedDictStore.
"""
self.data = data
def set_feature(self, commit, pathname, feature, value):
"""Store f_x(r,s) feature data for given commit/bug and pathname
In this storage type this method does not impose any
performance penalty (except of course the cost of calling the
method).
Parameters
----------
commit : str
Shortened SHA-1 of bugfix commit, identifying bug report
and its fix in the dataset; the $r$ in $f_x(r,s)$.
pathname : str
Full pathname relative to the top directory of the project
of one of files from the project; the $s$ in $f_x(r,s).
feature : str
Name of the feature; the $x$ in $f_x(r,s)$.
value
The value of the feature $f_x(r,s)$.
Notes
-----
The NestedDictStore takes ownership of the `value` parameter,
deepcopy-ing it just in case. It is safe to modify the variable
passed as the `value` parameter, even if it is a list, a dict
or other non-scalar object.
"""
# autovivify commit (not needed if appending to data from JSON)
if commit not in self.data:
self.data[commit] = {}
# autovivify 'views' inner key
if 'views' not in self.data[commit]:
self.data[commit]['views'] = {}
if self.category not in self.data[commit]['views']:
self.data[commit]['views'][self.category] = {}
# autovivify pathname
if pathname not in self.data[commit]['views'][self.category]:
self.data[commit]['views'][self.category][pathname] = {}
# set feature; note that value might be array or dict
self.data[commit]['views'][self.category][pathname][feature] = \
deepcopy(value)
def set_from_dict(self, commit, update):
"""Store updated information from dict
Assumes that dict has the following format:
{
"<pathname>": {
"<feature data name, e.g. 'frequency'>": <feature data>,
...
},
...
}
It also assumes that dict does not share data, but uses either
fresh or deepcopied data.
Notes
-----
Currently unused and not tested; this was created in an attempt to
move pick_bug_freq.py v2 code to using datastore_utils module, but
the script was rewritten to use v3 algorithm and use this module
instead.
Parameters
----------
commit : str
Shortened SHA-1 of bugfix commit, identifying bug report
and its fix in the dataset; the $r$ in $f_x(r,s)$.
update : dict | iterable
New data for multiple features and multiple pathnames for
given commit/bug, updating current state, replacing the same
features (using `dict.update`).
"""
# autovivify commit (not needed if appending to data from JSON)
if commit not in self.data:
self.data[commit] = {}
# autovivify 'views' inner key
if 'views' not in self.data[commit]:
self.data[commit]['views'] = {}
if self.category not in self.data[commit]['views']:
self.data[commit]['views'][self.category] = {}
# store updated information
self.data[commit]['views'][self.category].update(update)
def read_file(self, filename, preserve_order=False):
"""Read data from JSON file into storage, optionally preserving order
Data in JSON file should be in prescribed format, but the method
itself does not check that.
Parameters
----------
filename : str
The name of JSON file to read.
preserve_order : bool, optional
Whether to preserve order of keys in JSON file, storing data as
OrderedDict.
See also
--------
NestedDictStore.print_data : saves data in appropriate format
and with appropriate structure
"""
self.data = read_json(filename, preserve_order)
def print_data(self, args):
"""Save data to the JSON file (name set by command like arguments)
Simply dumps data in JSON format using `args_utils.print_json`. The
name of the output file (if any, that is if we are not printing to
standard output), and the formatting is given by command-line
arguments of the calling script.
Parameters
----------
args : argparse.Namespace
Result of running parser.parse_args(), that is expected to
include options about formatting JSON, results of running
args_utils.add_json_output_options(parser). This includes
args.indent and args.output
Side effects
------------
Prints information about progress to standard output.
"""
print_json(self.data, args)
class DataFrameHDF5:
"""Stores data as pandas.DataFrame, saves it as HDF5
Row index in DataFrame are pathnames.
Colums in DataFrame are values / features.
Each commit is saved as separate entry in HDF5.
Parameters
----------
filename : str
Name of file in HDF5, opened for appending with pandas.HDFStore()
category : str, optional
Ignored. Is here to present the same API for all storage
methods.
TODO: fix this for consistency (title maybe?), or remove altogeter.
Attributes
----------
store : pandas.HDFStore
Dict-like IO interface for storing pandas objects in PyTables
either Fixed or Table format. Opened for appending.
df : pandas.DataFrame
DataFrame holding data for a single commit/bug report, before it is
saved to `store` under 'g<short sha-1>' key.
df_br : pandas.DataFrame
DataFrame holding $br(r,s)$ data for a single commit/bug report $r$
as a sparse "adjacency" matrix, with value `1` for column $b$ and
row $s$ if and only if $b$ is in $br(r,s)$. Saved to `store` under
'g<short sha-1>/br'
commit : str | None
Identifier of the current bugfix commit/bug report. It is assumed
that features are stored incrementally, values for one commit after
all the values for the previous commit.
"""
# "Learning pandas", chapter "Reading and writing HDF5 format files"
def __init__(self, filename, category='bug_fixing'):
## described in class docstring
self.df = pd.DataFrame()
self.df_br = pd.DataFrame()
self.store = pd.HDFStore(filename)
self.commit = None
def _flush_maybe(self, commit):
"""Flush data for single commit from store to HDF5 file, if needed
If bugfix commit/bug report changed, save current data for previous
commit in the HDF5 file, making place for storing data for new commit.
Notes
-----
This code was extracted into private method to avoid code
duplication.
Parameters
----------
commit : str
Shortened SHA-1 of bugfix commit, identifying bug report
and its fix in the dataset
"""
if self.commit is None:
self.commit = commit
elif self.commit != commit:
# assumes commit by commit order
# NOTE: 'g' prepended to avoid:
#
# /usr/lib/python2.7/dist-packages/tables/path.py:112:
# NaturalNameWarning: object name is not a valid Python
# identifier: u'8e6cef0'; it does not match the pattern
# ``^[a-zA-Z_][a-zA-Z0-9_]*$``; you will not be able to
# use natural naming to access this object; using
# ``getattr()`` will still work, though
self.store['g'+self.commit] = self.df
if len(self.df_br > 0):
self.store['g'+self.commit+'/br'] = \
self.df_br.to_sparse(fill_value=0)
# DEBUG
#print('BR(%s) has density %f' %
# (self.commit, self.df_br.to_sparse().density))
# TODO: make it configurable
#self.store.flush(fsync=False)
self.df = pd.DataFrame()
if len(self.df_br > 0):
self.df_br = pd.DataFrame()
self.commit = commit
# DEBUG
#print('## %s ===========================================' % commit)
def set_feature(self, commit, pathname, feature, value):
"""Store f_x(r,s) feature data for given commit/bug and pathname
If the `commit` parameter is different from previous commit (stored
in `self.commit` attribute), if flushes DataFrames storing data for
that previous commit to HDFStore.
Otherwise it adds (appending single-element DataFrame) or modify
single entry in `self.df` DataFrame... which is what probably causes
poor performance of this storage method.
Parameters
----------
commit : str
Shortened SHA-1 of bugfix commit, identifying bug report
and its fix in the dataset; the $r$ in $f_x(r,s)$.
pathname : str
Full pathname relative to the top directory of the project
of one of files from the project; the $s$ in $f_x(r,s).
feature : str
Name of the feature; the $x$ in $f_x(r,s)$.
value
The value of the feature $f_x(r,s)$.
"""
self._flush_maybe(commit)
# unicode in index requires pickling; we can assume sane pathnames
# NOTE: PyTables for Python 2.x specific
pathname = str(pathname)
if feature not in self.df.columns:
# if column does not exist, add it
self.df[feature] = pd.Series({pathname: value})
elif pathname not in self.df.index:
# if row does not exist, add it
self.df.append(
pd.DataFrame.from_dict({feature: {pathname: value}})
)
else:
# modify scalar value
self.df.loc[pathname, feature] = value
def set_br(self, data, commit, pathname, feature, br_list):
"""Store br(r,s) with value being a list of commits
The list of bugfix commits/bug reports is stored in "adjacency"
matrix for given `commit`, where index/row is `pathname` and the
DataFrame has ones for columns being values of `br_list`.
This is then turned into SparseDataFrame for storage, and saved
under 'g<commit>/<feature>' key in HDF5 file.
Notes
-----
The idea was that sparse matrix would be stored effectively
compressed in HDF5 file. It turns out that it is not so; this way
of storing br(r,s) data takes up very large amound of disk space;
repacking doesn't help here.
Parameters
----------
commit : str
Shortened SHA-1 of bugfix commit, identifying bug report
and its fix in the dataset; the $r$ in $f_x(r,s)$.
pathname : str
Full pathname relative to the top directory of the project
of one of files from the project; the $s$ in $f_x(r,s).
feature : str
Name of the feature; the $x$ in $f_x(r,s)$. Would be 'br' for
feature $br(r,s)$, for example.
br_list : list of str
List of commits (of shortened sha-1 ideintifiers of bugfix
commits) that are values of $f_x(r,s)$
"""
self._flush_maybe(commit)
# do not add empty list
if len(br_list) == 0:
return
# unicode in index requires pickling; we can assume sane pathnames
# NOTE: PyTables for Python 2.x specific
pathname = str(pathname)
# one row dataframe
df_new = pd.DataFrame({pathname: pd.Series(
[1]*len(br_list), index=[br_list],
)}).T
# DEBUG
#print('df_new')
#print(df_new)
# DEBUG
#print('df_br')
#print(self.df_br)
if pathname not in self.df_br.index:
# if row does not exist, add it
# append() is special case of concat()
self.df_br = self.df_br.append(df_new)
else:
# if it exists, modify it (join on index)
# join() is special case of merge()
self.df_br = self.df_br.join(df_new)
def read_file(self, filename):
"""Read data from HDF5 file into storage, saving current data
Ensures that all data is saved, and flushes it to filesystem, but it
currently does not explicitely close the previous file
(`self.store`).
Parameters
----------
filename : str
The name of HDF5 file to read.
See also
--------
DataFrameHDF5.print_data : saves data in appropriate format
and with appropriate structure
"""
# save old data
self.store['g'+self.commit] = self.df
self.store.flush(fsync=True)
# read new
self.store = pd.HDFStore(filename)
self.commit = None
def print_data(self, args):
"""Save data to the HDF5 file (given at store creation time)
Actually ensures that all data is put into PyTable (in HDFStore),
and that data is flushed to disk (fsync-ed). Does not close
`self.store`.
Note that contrary to JSON format, HDF5 is a binary format and is
not suitable for printing to standard output.
Parameters
----------
args : argparse.Namespace
Ignored currently.
"""
# store what may have been not stored
self.store['g'+self.commit] = self.df
# ensure that it is written to disk
self.store.flush(fsync=True)
def select_datastore_backend(filename, category='bug_fixing'):
"""Given file name, return appropriate storage object
This function allows scripts using this module to select mechanism for
storing feature data. Currently the choice is based on the output file
pathname, or to be more exact its extension.
Examples
--------
>>> from datastore_utils import select_datastore_backend
...
>>> store = select_datastore_backend('test.json', category='bug_fixing')
>>> store
<datastore_utils.NestedDictStore instance at 0x7fe9e16ed200>
Parameters
----------
filename : str | unicode
Name of the filename where to save collected features data.
category : str, default 'bug_fixing'
Category characterizing the set of features that would be saved in
the store.
Returns
-------
NestedDictStore | DataFrameHDF5
Currently returns DataFrameHDF5 if `filename` has '.h5' extension,
NestedDictStore if filename has '.json' extension and in all other
cases.
"""
if filename is None:
return NestedDictStore(filename, category)
(root, ext) = os.path.splitext(filename)
if ext == '.json':
return NestedDictStore(filename, category)
elif ext == '.h5':
return DataFrameHDF5(filename, category)
else:
return NestedDictStore(filename, category)
# end of datastore_utils.py