-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstones_avp_plot.py
494 lines (415 loc) · 16.4 KB
/
stones_avp_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#!/usr/bin/env python
# Last modified: Time-stamp: <2009-01-20 19:40:57 haines>
"""stones_avp_plot"""
import os, sys
import datetime, time, dateutil, dateutil.tz
import pycdf
import numpy
sys.path.append('/home/haines/nccoos/raw2proc')
del(sys)
os.environ["MPLCONFIGDIR"]="/home/haines/.matplotlib/"
from pylab import figure, twinx, savefig, setp, getp, cm, colorbar
from matplotlib.dates import DayLocator, HourLocator, MinuteLocator, DateFormatter, date2num, num2date
import procutil
print 'stones_avp_plot ...'
prev_month, this_month, next_month = procutil.find_months(procutil.this_month())
# ncFile1='/seacoos/data/nccoos/level1/stones/avp/stones_avp_2008_01.nc'
# ncFile2='/seacoos/data/nccoos/level1/stones/avp/stones_avp_2008_02.nc'
ncFile1='/seacoos/data/nccoos/level1/stones/avp/stones_avp_'+prev_month.strftime('%Y_%m')+'.nc'
ncFile2='/seacoos/data/nccoos/level1/stones/avp/stones_avp_'+this_month.strftime('%Y_%m')+'.nc'
have_ncFile1 = os.path.exists(ncFile1)
have_ncFile2 = os.path.exists(ncFile2)
print ' ... loading data for graph from ...'
print ' ... ... ' + ncFile1 + ' ... ' + str(have_ncFile1)
print ' ... ... ' + ncFile2 + ' ... ' + str(have_ncFile2)
if have_ncFile1 and have_ncFile2:
nc = pycdf.CDFMF((ncFile1, ncFile2))
elif not have_ncFile1 and have_ncFile2:
nc = pycdf.CDFMF((ncFile2,))
elif have_ncFile1 and not have_ncFile2:
nc = pycdf.CDFMF((ncFile1,))
else:
print ' ... both files do not exist -- NO DATA LOADED'
return
ncvars = nc.variables()
# print ncvars
es = nc.var('time')[:]
units = nc.var('time').units
dt = [procutil.es2dt(e) for e in es]
# set timezone info to UTC (since data from level1 should be in UTC!!)
dt = [e.replace(tzinfo=dateutil.tz.tzutc()) for e in dt]
# return new datetime based on computer local
dt_local = [e.astimezone(dateutil.tz.tzlocal()) for e in dt]
dn = date2num(dt)
wd = nc.var('wd')[:]
data={}
data['ses'] = nc.var('stime')[:]
data['z'] = nc.var('z')[:]
data['wtemp'] = nc.var('wtemp')[:]
data['salin'] = nc.var('salin')[:]
data['turb'] = nc.var('turb')[:]
data['ph'] = nc.var('ph')[:]
data['do'] = nc.var('do')[:]
data['chl'] = nc.var('chl')[:]
nc.close()
# bin_size = sensor_info['bin_size'] # Bin Size (meters)
# nominal_depth = platform_info['water_depth'] # Mean sea level at station (meters) or nominal water depth
bin_size = 0.1 # 10cm or 0.1m
nominal_depth = 4.0 # m
z = numpy.arange(0, -1*nominal_depth, -1*bin_size, dtype=float)
nbins = len(z)
N = len(es)
#
gd = {}
gd['wtemp'] = numpy.ma.array(numpy.ones((N,nbins), dtype=float)*numpy.nan)
gd['salin'] = numpy.ma.array(numpy.ones((N,nbins), dtype=float)*numpy.nan)
gd['turb'] = numpy.ma.array(numpy.ones((N,nbins), dtype=float)*numpy.nan)
gd['ph'] = numpy.ma.array(numpy.ones((N,nbins), dtype=float)*numpy.nan)
gd['chl'] = numpy.ma.array(numpy.ones((N,nbins), dtype=float)*numpy.nan)
gd['do'] = numpy.ma.array(numpy.ones((N,nbins), dtype=float)*numpy.nan)
Ns = numpy.array(numpy.ones((N,nbins), dtype=float)*numpy.nan)
varlist = ['wtemp', 'salin', 'turb', 'ph', 'chl', 'do']
print ' ... gridding data ...'
for i in range(nbins):
ibin = ((z[i]<=data['z'])*(data['z']>z[i]-bin_size))
#
nsamp = numpy.nansum(ibin, axis=1)
# can be used if want to have a minimum number of samples per bin
Ns[:,i] = nsamp
#
for v in varlist:
ta = data[v] # ta = data['wtemp']
inan = numpy.isnan(ta)
# mask out either Nan or no in bin to get mean of samples within bin
ta = numpy.ma.masked_where(inan|~ibin, ta)
# ta = numpy.ma.masked_invalid(ta) # not this version of numpy.ma
# gd['wtemp'][:,i] = ta.mean(axis=1).data
gd[v][:,i] = ta.mean(axis=1)
gd[v].set_fill_value = numpy.nan
del(ta)
# reset any exact zeros from averaging to NaN
# gd[v][gd[v]==0] = numpy.nan
#
wtm = gd['wtemp']
sam = gd['salin']
tum = gd['turb']
phm = gd['ph']
chm = gd['chl']
dom = gd['do']
# last dt in data for labels
dt1 = dt[-1]
dt2 = dt_local[-1]
diff = abs(dt1 - dt2)
if diff.days>0:
last_dt_str = dt1.strftime("%H:%M %Z on %b %d, %Y") + ' (' + dt2.strftime("%H:%M %Z, %b %d") + ')'
else:
last_dt_str = dt1.strftime("%H:%M %Z") + ' (' + dt2.strftime("%H:%M %Z") + ')' \
+ dt2.strftime(" on %b %d, %Y")
# add a couple of inches to length of page for 6 subplots (5 subs in 8 inches, 6 subs in 10)
fig = figure(figsize=(10, 10))
fig.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.1, hspace=0.1)
#######################################
# Last 30 days
#######################################
print ' ... Last 30 days'
ax = fig.add_subplot(6,1,1)
axs = [ax]
# use masked array to hide NaN's on plot
# wtm = numpy.ma.masked_where(numpy.isnan(wtemp), wtemp)
# range for pcolor plots
cmin = numpy.floor(wtm.min())
cmax = cmin+8.
# print "%s : %g %g \n" % ('Temp', cmin, cmax)
# cmin, cmax = (15., 35.)
# plot pcolor
pc = ax.pcolor(dn, z, wtm.T, cmap=cm.get_cmap('jet'), vmin=cmin, vmax=cmax)
# setup colorbar axes instance.
l,b,w,h = ax.get_position()
cax = fig.add_axes([l+0.04, b+0.02, 0.25*w, 0.03])
cb = colorbar(pc, cax=cax, orientation='horizontal') # draw colorbar
cb.set_label('Water Temperature (deg C)')
cb.ax.xaxis.set_label_position('top')
cb.ax.set_xticks([0.1, 0.3, 0.5, 0.7, 0.9])
# make tick labels for 10 posns set and round to one decimal place
xtl = numpy.round(numpy.linspace(cmin, cmax, 10), decimals=1)
# but only select one at set_xticks
cb.ax.set_xticklabels([xtl[1], xtl[3], xtl[5], xtl[7], xtl[9]])
# ax.plot returns a list of lines, so unpack tuple
# l1, = ax.plot_date(dt, wd, fmt='k-')
# l1.set_label('Water Level')
ax.set_ylabel('Depth (m)')
ax.set_ylim(-4.,0.)
# ax.set_xlim(dt[0], dt[-1]) # first to last regardless of what
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1])) # last minus 30 days to last
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
ax.set_xticklabels([])
# this only moves the label not the tick labels
ax.xaxis.set_label_position('top')
ax.set_xlabel('Stones Bay AVP -- Last 30 days from ' + last_dt_str)
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) meters to (rhs) feet
feet = [procutil.meters2feet(val) for val in ax.get_ylim()]
ax2.set_ylim(feet)
ax2.set_ylabel('Depth (ft)')
# legend
# ls1 = l1.get_label()
# leg = ax.legend((l1,), (ls1,), loc='upper left')
# ltext = leg.get_texts() # all the text.Text instance in the legend
# llines = leg.get_lines() # all the lines.Line2D instance in the legend
# frame = leg.get_frame() # the patch.Rectangle instance surrounding the legend
# frame.set_facecolor('0.80') # set the frame face color to light gray
# frame.set_alpha(0.5) # set alpha low to see through
# setp(ltext, fontsize='small') # the legend text fontsize
# setp(llines, linewidth=1.5) # the legend linewidth
# leg.draw_frame(False) # don't draw the legend frame
#######################################
#
ax = fig.add_subplot(6,1,2)
axs.append(ax)
# use masked array to hide NaN's on plot
# sam = numpy.ma.masked_where(numpy.isnan(salin), salin)
# range for pcolor plots
cmin = numpy.floor(sam.mean()-2*sam.std())
cmax = cmin+10.
# print "%s : %g %g \n" % ('Salin', cmin, cmax)
# cmin, cmax = (0., 50.)
pc = ax.pcolor(dn, z, sam.T, cmap=cm.get_cmap('Blues_r'), vmin=cmin, vmax=cmax)
# setup colorbar axes instance.
l,b,w,h = ax.get_position()
cax = fig.add_axes([l+0.04, b+0.02, 0.25*w, 0.03])
cb = colorbar(pc, cax=cax, orientation='horizontal') # draw colorbar
cb.set_label('Salinity (PSU)')
cb.ax.xaxis.set_label_position('top')
cb.ax.set_xticks([0.1, 0.3, 0.5, 0.7, 0.9])
xtl = numpy.round(numpy.linspace(cmin, cmax, 10), decimals=1)
cb.ax.set_xticklabels([xtl[1], xtl[3], xtl[5], xtl[7], xtl[9]])
# cb.ax.set_xticklabels([12., 16., 20., 24., 28.])
# ax.plot returns a list of lines, so unpack tuple
# l1, = ax.plot_date(dt, wd, fmt='k-')
# l1.set_label('Water Level')
ax.set_ylabel('Depth (m)')
ax.set_ylim(-4.,0.)
# first to last regardless of what
# ax.set_xlim(dt[0], dt[-1])
# last minus 30 days,
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) meters to (rhs) feet
feet = [procutil.meters2feet(val) for val in ax.get_ylim()]
ax2.set_ylim(feet)
ax2.set_ylabel('Depth (ft)')
# legend
# ls1 = l1.get_label()
# leg = ax.legend((l1,), (ls1,), loc='upper left')
# ltext = leg.get_texts() # all the text.Text instance in the legend
# llines = leg.get_lines() # all the lines.Line2D instance in the legend
# frame = leg.get_frame() # the patch.Rectangle instance surrounding the legend
# frame.set_facecolor('0.80') # set the frame face color to light gray
# frame.set_alpha(0.5) # set alpha low to see through
# setp(ltext, fontsize='small') # the legend text fontsize
# setp(llines, linewidth=1.5) # the legend linewidth
# leg.draw_frame(False) # don't draw the legend frame
#######################################
#
ax = fig.add_subplot(6,1,3)
axs.append(ax)
# use masked array to hide NaN's on plot
# tum = numpy.ma.masked_where(numpy.isnan(turb), turb)
# range for pcolor plots
cmin, cmax = (0., 10.)
pc = ax.pcolor(dn, z, tum.T, cmap=cm.get_cmap('YlOrBr'), vmin=cmin, vmax=cmax)
# setup colorbar axes instance.
l,b,w,h = ax.get_position()
cax = fig.add_axes([l+0.04, b+0.02, 0.25*w, 0.03])
cb = colorbar(pc, cax=cax, orientation='horizontal') # draw colorbar
cb.set_label('Turbidity (NTU)')
cb.ax.xaxis.set_label_position('top')
cb.ax.set_xticks([0.1, 0.3, 0.5, 0.7, 0.9])
xtl = numpy.round(numpy.linspace(cmin, cmax, 10), decimals=0)
cb.ax.set_xticklabels([xtl[1], xtl[3], xtl[5], xtl[7], xtl[9]])
# cb.ax.set_xticklabels([12., 16., 20., 24., 28.])
# ax.plot returns a list of lines, so unpack tuple
# l1, = ax.plot_date(dt, wd, fmt='k-')
# l1.set_label('Water Level')
ax.set_ylabel('Depth (m)')
ax.set_ylim(-4.,0.)
# first to last regardless of what
# ax.set_xlim(dt[0], dt[-1])
# last minus 30 days,
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) meters to (rhs) feet
feet = [procutil.meters2feet(val) for val in ax.get_ylim()]
ax2.set_ylim(feet)
ax2.set_ylabel('Depth (ft)')
#######################################
#
ax = fig.add_subplot(6,1,4)
axs.append(ax)
# use masked array to hide NaN's on plot
# cm = numpy.ma.masked_where(numpy.isnan(chl), chl)
# range for pcolor plots
cmin = numpy.floor(chm.min())
cmax = cmin+15.
# cmin, cmax = (0., 100.)
pc = ax.pcolor(dn, z, chm.T, cmap=cm.get_cmap('BuGn'), vmin=cmin, vmax=cmax)
# setup colorbar axes instance.
l,b,w,h = ax.get_position()
cax = fig.add_axes([l+0.04, b+0.02, 0.25*w, 0.03])
cb = colorbar(pc, cax=cax, orientation='horizontal') # draw colorbar
cb.set_label('Chlorophyll (ug l-1)')
cb.ax.xaxis.set_label_position('top')
cb.ax.set_xticks([0.1, 0.3, 0.5, 0.7, 0.9])
xtl = numpy.round(numpy.linspace(cmin, cmax, 10), decimals=1)
cb.ax.set_xticklabels([xtl[1], xtl[3], xtl[5], xtl[7], xtl[9]])
# cb.ax.set_xticklabels([12., 16., 20., 24., 28.])
# ax.plot returns a list of lines, so unpack tuple
# l1, = ax.plot_date(dt, wd, fmt='k-')
# l1.set_label('Water Level')
ax.set_ylabel('Depth (m)')
ax.set_ylim(-4.,0.)
# first to last regardless of what
# ax.set_xlim(dt[0], dt[-1])
# last minus 30 days,
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) meters to (rhs) feet
feet = [procutil.meters2feet(val) for val in ax.get_ylim()]
ax2.set_ylim(feet)
ax2.set_ylabel('Depth (ft)')
#######################################
#
ax = fig.add_subplot(6,1,5)
axs.append(ax)
# use masked array to hide NaN's on plot
# dom = numpy.ma.masked_where(numpy.isnan(do), do)
# range for pcolor plots
cmin, cmax = (0., 15.)
pc = ax.pcolor(dn, z, dom.T, cmap=cm.get_cmap('PiYG'), vmin=cmin, vmax=cmax)
# setup colorbar axes instance.
l,b,w,h = ax.get_position()
cax = fig.add_axes([l+0.04, b+0.02, 0.25*w, 0.03])
cb = colorbar(pc, cax=cax, orientation='horizontal') # draw colorbar
cb.set_label('Dissolved Oxygen (mg l-1)')
cb.ax.xaxis.set_label_position('top')
cb.ax.set_xticks([0.1, 0.3, 0.5, 0.7, 0.9])
xtl = numpy.round(numpy.linspace(cmin, cmax, 10), decimals=0)
cb.ax.set_xticklabels([xtl[1], xtl[3], xtl[5], xtl[7], xtl[9]])
# cb.ax.set_xticklabels([12., 16., 20., 24., 28.])
# ax.plot returns a list of lines, so unpack tuple
# l1, = ax.plot_date(dt, wd, fmt='k-')
# l1.set_label('Water Level')
ax.set_ylabel('Depth (m)')
ax.set_ylim(-4.,0.)
# first to last regardless of what
# ax.set_xlim(dt[0], dt[-1])
# last minus 30 days,
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) meters to (rhs) feet
feet = [procutil.meters2feet(val) for val in ax.get_ylim()]
ax2.set_ylim(feet)
ax2.set_ylabel('Depth (ft)')
#######################################
#
ax = fig.add_subplot(6,1,6)
axs.append(ax)
# use masked array to hide NaN's on plot
# phm = numpy.ma.masked_where(numpy.isnan(ph), ph)
# range for pcolor plots
# cmin, cmax = numpy.round([sm.min(), sm.max()], decimals=0)
# cmin = cmin-1
# cmax = cmax+1
# print "%s : %g %g \n" % ('pH', cmin, cmax)
cmin, cmax = (6., 8.)
pc = ax.pcolor(dn, z, phm.T, cmap=cm.get_cmap('cool'), vmin=cmin, vmax=cmax)
# setup colorbar axes instance.
l,b,w,h = ax.get_position()
cax = fig.add_axes([l+0.04, b+0.02, 0.25*w, 0.03])
cb = colorbar(pc, cax=cax, orientation='horizontal') # draw colorbar
cb.set_label('pH')
cb.ax.xaxis.set_label_position('top')
cb.ax.set_xticks([0.1, 0.3, 0.5, 0.7, 0.9])
xtl = numpy.round(numpy.linspace(cmin, cmax, 10), decimals=1)
cb.ax.set_xticklabels([xtl[1], xtl[3], xtl[5], xtl[7], xtl[9]])
# cb.ax.set_xticklabels([12., 16., 20., 24., 28.])
# ax.plot returns a list of lines, so unpack tuple
# l1, = ax.plot_date(dt, wd, fmt='k-')
# l1.set_label('Water Level')
ax.set_ylabel('Depth (m)')
ax.set_ylim(-4.,0.)
# first to last regardless of what
# ax.set_xlim(dt[0], dt[-1])
# last minus 30 days,
ax.set_xlim(date2num(dt[-1])-30, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(2,32,2)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,12)) )
ax.xaxis.set_major_formatter( DateFormatter('%m/%d') )
ax.set_xlabel('Stones Bay AVP -- Last 30 days from ' + last_dt_str)
# right-hand side scale
ax2 = twinx(ax)
ax2.yaxis.tick_right()
# convert (lhs) meters to (rhs) feet
feet = [procutil.meters2feet(val) for val in ax.get_ylim()]
ax2.set_ylim(feet)
ax2.set_ylabel('Depth (ft)')
# save figure
savefig('/home/haines/rayleigh/img/stones_avp_last30days.png')
#######################################
# Last 7 days
#######################################
print ' ... Last 7 days'
for i in [0, 1, 2, 3, 4]:
ax = axs[i]
ax.set_xlim(date2num(dt[-1])-7, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(1,32,1)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,6)) )
ax.set_xticklabels([])
if i==0:
ax.set_xlabel('Stones Bay AVP -- Last 7 days from ' + last_dt_str)
#
ax = axs[5]
ax.set_xlim(date2num(dt[-1])-7, date2num(dt[-1]))
ax.xaxis.set_major_locator( DayLocator(range(1,32,1)) )
ax.xaxis.set_minor_locator( HourLocator(range(0,25,6)) )
ax.xaxis.set_major_formatter( DateFormatter('%m/%d') )
ax.set_xlabel('Stones Bay AVP -- Last 7 days from ' + last_dt_str)
savefig('/home/haines/rayleigh/img/stones_avp_last07days.png')
#######################################
# Last 1 day (24hrs)
#######################################
print ' ... Last 1 days'
for i in [0, 1, 2, 3, 4]:
ax = axs[i]
ax.set_xlim(date2num(dt[-1])-1, date2num(dt[-1]))
ax.xaxis.set_major_locator( HourLocator(range(0,25,1)) )
ax.xaxis.set_minor_locator( MinuteLocator(range(0,61,30)) )
ax.set_xticklabels([])
if i==0:
ax.set_xlabel('Stones Bay AVP -- Last 24 hours from ' + last_dt_str)
ax = axs[5]
ax.set_xlim(date2num(dt[-1])-1, date2num(dt[-1]))
ax.xaxis.set_major_locator( HourLocator(range(0,25,1)) )
ax.xaxis.set_minor_locator( MinuteLocator(range(0,61,30)) )
ax.xaxis.set_major_formatter( DateFormatter('%H') )
ax.set_xlabel('Stones Bay AVP -- Last 24 hours from ' + last_dt_str)
savefig('/home/haines/rayleigh/img/stones_avp_last01days.png')