-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
181 lines (153 loc) · 5.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from src.losses import combined_loss
from src.metrics import dice_score
from src import trainUtil
from src.model import NC_Net
from src.dataloader import Dataset
from src.augmentation import (
get_training_augmentation,
get_validation_augmentation,
get_preprocessing,
)
import config
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import multiprocessing
def train(train_dir, test_dir, dataset_name):
model = NC_Net(
encoder=config.encoder,
encoder_weights=config.encoder_weights,
device=config.device,
)
preprocessing_fn = None
train_dataset = Dataset(
train_dir,
augmentation=get_training_augmentation(),
preprocessing=get_preprocessing(preprocessing_fn),
mode="train",
)
valid_dataset = Dataset(
test_dir,
augmentation=get_validation_augmentation(),
preprocessing=get_preprocessing(preprocessing_fn),
mode="test",
)
batch_size = config.batch_size
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=multiprocessing.cpu_count(),
pin_memory=True,
persistent_workers=True,
prefetch_factor=32,
)
valid_loader = DataLoader(
valid_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=multiprocessing.cpu_count(),
pin_memory=True,
persistent_workers=True,
prefetch_factor=32,
)
metrics = [
dice_score,
]
optimizer = torch.optim.RAdam([
dict(params=model.parameters(),
lr=config.learning_rate,
betas=(0.9, 0.999)),
])
loss_fn = combined_loss
train_epoch = trainUtil.TrainEpoch(
model,
loss=loss_fn,
metrics=metrics,
optimizer=optimizer,
device=config.device,
verbose=True,
)
valid_epoch = trainUtil.ValidEpoch(
model,
loss=loss_fn,
metrics=metrics,
device=config.device,
verbose=True,
)
writer_path = "./{}/NC-Net_{}_{}".format(config.tensorboard_logs,
config.encoder,
dataset_name)
writer = SummaryWriter(writer_path)
min_loss = 9999
max_score = 0
last_save = 0
for i in range(1, config.epochs):
print("\nEpoch: {}".format(i))
train_logs = train_epoch.run(train_loader)
valid_logs = valid_epoch.run(valid_loader)
writer.add_scalar("Loss/train", train_logs[loss_fn.__name__], i)
writer.add_scalar("Loss/valid", valid_logs[loss_fn.__name__], i)
writer.add_scalar("Dice/train", train_logs[metrics[0].__name__], i)
writer.add_scalar("Dice/valid", valid_logs[metrics[0].__name__], i)
writer.add_scalar("Learning_Rate", optimizer.param_groups[0]["lr"], i)
if min_loss > valid_logs[loss_fn.__name__]:
min_loss = valid_logs[loss_fn.__name__]
torch.save(
model.state_dict(),
"./{}/NC-Net_{}_{}.pth".format(config.checkpoints_dir,
config.encoder,
dataset_name),
)
last_save = i
print("Model saved Loss!")
if max_score < valid_logs[metrics[0].__name__]:
max_score = valid_logs[metrics[0].__name__]
torch.save(
model.state_dict(),
"./{}/NC-Net__{}_{}_metric.pth".format(config.checkpoints_dir,
config.encoder,
dataset_name),
)
last_save = i
print("Model saved Metric!")
if i - last_save >= 80:
last_save = i
optimizer.param_groups[0][
"lr"] = optimizer.param_groups[0]["lr"] * 0.5
print("Decrease decoder learning rate to ",
optimizer.param_groups[0]["lr"])
writer.flush()
if __name__ == "__main__":
dataset_name = "all"
train_dir = "data/{}/train/".format(dataset_name)
test_dir = "data/{}/test/".format(dataset_name)
train(train_dir, test_dir, dataset_name)
# dataset_name = "consep"
# train_dir = "data/{}/train/".format(dataset_name)
# test_dir = "data/{}/test/".format(dataset_name)
# train(train_dir, test_dir, dataset_name)
# dataset_name = "pan1"
# train_dir = "data/{}/train/".format(dataset_name)
# test_dir = "data/{}/test/".format(dataset_name)
# train(train_dir, test_dir, dataset_name)
# dataset_name = "pan2"
# train_dir = "data/{}/train/".format(dataset_name)
# test_dir = "data/{}/test/".format(dataset_name)
# train(train_dir, test_dir, dataset_name)
# dataset_name = "pan3"
# train_dir = "data/{}/train/".format(dataset_name)
# test_dir = "data/{}/test/".format(dataset_name)
# train(train_dir, test_dir, dataset_name)
# dataset_name = "liz1"
# train_dir = "data/{}/train/".format(dataset_name)
# test_dir = "data/{}/test/".format(dataset_name)
# train(train_dir, test_dir, dataset_name)
# dataset_name = "liz2"
# train_dir = "data/{}/train/".format(dataset_name)
# test_dir = "data/{}/test/".format(dataset_name)
# train(train_dir, test_dir, dataset_name)
# dataset_name = "liz3"
# train_dir = "data/{}/train/".format(dataset_name)
# test_dir = "data/{}/test/".format(dataset_name)
# train(train_dir, test_dir, dataset_name)