-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathstock-weekday-volatility.py
executable file
·149 lines (125 loc) · 4.31 KB
/
stock-weekday-volatility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env -S uv run --quiet --script
# /// script
# dependencies = [
# "matplotlib",
# "seaborn",
# "yfinance",
# "persistent-cache@git+https://github.com/namuan/persistent-cache"
# ]
# ///
"""
This script analyzes stock intraday volatility by fetching historical stock data from Yahoo Finance.
It calculates the daily high-low price difference for each weekday and visualizes the data using bar, box, and violin plots.
Examples of how to run the script:
- Default: Analyze SPY for the last 5 years:
./stock-weekday-volatility.py
- Specify a stock symbol and date range:
uv run stock-weekday-volatility.py --symbol AAPL --start 2020-01-01 --end 2023-01-01
"""
import argparse
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import seaborn as sns
import yfinance as yf
from persistent_cache import PersistentCache
# Set a modern style
sns.set_theme(style="whitegrid")
# Define a consistent color palette for weekdays
weekday_palette = {
"Monday": "#1f77b4",
"Tuesday": "#ff7f0e",
"Wednesday": "#2ca02c",
"Thursday": "#d62728",
"Friday": "#9467bd",
}
@PersistentCache()
def fetch_stock_data(symbol, start_date, end_date):
"""Fetch historical stock data from Yahoo Finance."""
data = yf.download(symbol, start=start_date, end=end_date)
data["High-Low Diff"] = data["High"] - data["Low"]
data["Weekday"] = data.index.weekday
weekday_map = {
0: "Monday",
1: "Tuesday",
2: "Wednesday",
3: "Thursday",
4: "Friday",
}
data["Weekday"] = data["Weekday"].map(weekday_map)
return data
def plot_combined(data, symbol):
"""Plot the average intraday range, distribution, and violin plot in a single figure."""
avg_intraday_range_by_day = data.groupby("Weekday")["High-Low Diff"].mean()
fig, axes = plt.subplots(1, 3, figsize=(24, 6))
# Reorder the data for consistent plotting order
order = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]
# Plot average intraday range
sns.barplot(
x=avg_intraday_range_by_day.index,
y=avg_intraday_range_by_day.values,
ax=axes[0],
order=order,
palette=weekday_palette,
hue=avg_intraday_range_by_day.index,
legend=False,
)
axes[0].set_title(f"Average Intraday Range (High-Low) {symbol}", fontsize=14)
axes[0].set_ylabel("Average Intraday Range (Price)", fontsize=12)
axes[0].set_xlabel("") # Hide x-axis label
# Plot intraday range distribution
sns.boxplot(
x="Weekday",
y="High-Low Diff",
data=data,
order=order,
ax=axes[1],
hue="Weekday",
palette=weekday_palette,
legend=False,
)
axes[1].set_title(f"Intraday Range (High-Low) Distribution {symbol}", fontsize=14)
axes[1].set_ylabel("Intraday Range (Price)", fontsize=12)
axes[1].set_xlabel("") # Hide x-axis label
# Plot intraday range violin plot
sns.violinplot(
x="Weekday",
y="High-Low Diff",
data=data,
order=order,
ax=axes[2],
hue="Weekday",
palette=weekday_palette,
legend=False,
)
axes[2].set_title(f"Intraday Range (High-Low) Violin Plot {symbol}", fontsize=14)
axes[2].set_ylabel("Intraday Range (Price)", fontsize=12)
axes[2].set_xlabel("") # Hide x-axis label
plt.tight_layout()
plt.show()
def main():
# Set up argument parser
parser = argparse.ArgumentParser(description="Analyze stock intraday volatility.")
parser.add_argument(
"--symbol", type=str, default="SPY", help="Stock symbol (default: SPY)"
)
parser.add_argument(
"--start", type=str, help="Start date (YYYY-MM-DD). Defaults to 5 years ago."
)
parser.add_argument(
"--end", type=str, help="End date (YYYY-MM-DD). Defaults to today."
)
# Parse the arguments
args = parser.parse_args()
# Default date range: from 5 years ago to today
end_date = args.end if args.end else datetime.today().strftime("%Y-%m-%d")
start_date = (
args.start
if args.start
else (datetime.today() - timedelta(days=5 * 365)).strftime("%Y-%m-%d")
)
# Fetch the stock data
data = fetch_stock_data(args.symbol, start_date, end_date)
# Plot the combined figure
plot_combined(data, args.symbol)
if __name__ == "__main__":
main()