-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_aspect_extraction.py
40 lines (32 loc) · 1.01 KB
/
main_aspect_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 26 09:44:18 2022
@author: Sagun Shakya
"""
import argparse
import os
import random
import torch
from numpy import empty
from numpy import random as rdm
from pandas import DataFrame
from transformers import BertTokenizerFast
from dataloader.asp_dataloader import AspectExtractionCorpus_Transformer
# Local Modules.
from dataloader.dl_dataloader import Dataloader
from trainer.dl_trainer import Trainer
from utilities import utils
from utilities.read_configuration import DotDict
# Determinism.
SEED = 1234
random.seed(SEED)
rdm.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
tokenizer = BertTokenizerFast.from_pretrained("google/muril-base-cased")
dataloader = AspectExtractionCorpus_Transformer(
"D:\\ML_projects\\IPV-Project\\data\\aspect_extraction\\kfold\\2", tokenizer, 128
)
train_dl, val_dl = dataloader.load_data(batch_sizes=(8, 8), shuffle=True)
print(f"Train data : {next(iter(train_dl))}")
print(f"\nVal data : {next(iter(val_dl))}")