forked from JonathanGXu/HC-GAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
302 lines (241 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import argparse
import os
import torch
from torch.utils.data import DataLoader
import numpy as np
from ogb.nodeproppred import PygNodePropPredDataset
from torch_geometric.datasets import Amazon, Coauthor, Planetoid, Reddit
import time
from torch_geometric.data import Data
from model import LPDecoder_ogb as LPDecoder
from local_gcn import HCGAE
from torch_geometric.utils import to_undirected, add_self_loops
from torch_sparse import SparseTensor
from sklearn.metrics import roc_auc_score
from utils import edgemask_um, edgemask_dm, do_edge_split_nc
from sklearn.model_selection import KFold
from sklearn import svm
from sklearn.metrics import f1_score
import os.path as osp
def random_edge_mask(args, edge_index, device, num_nodes):
num_edge = len(edge_index)
index = np.arange(num_edge)
np.random.shuffle(index)
mask_num = int(num_edge * args.mask_ratio)
pre_index = torch.from_numpy(index[0:-mask_num])
mask_index = torch.from_numpy(index[-mask_num:])
edge_index_train = edge_index[pre_index].t()
edge_index_mask = edge_index[mask_index].to(device)
edge_index_train, _ = add_self_loops(edge_index_train, num_nodes=num_nodes)
adj = SparseTensor.from_edge_index(edge_index_train).t()
return adj, edge_index_train, edge_index_mask
def train(model, predictor, data, edge_index, optimizer, args):
model.train()
predictor.train()
total_loss = total_examples = 0
if args.mask_type == 'um':
adj, _, pos_train_edge = edgemask_um(args.mask_ratio, edge_index, data.x.device, data.x.shape[0])
else:
adj, _, pos_train_edge = edgemask_dm(args.mask_ratio, edge_index, data.x.device, data.x.shape[0])
adj = adj.to_dense()
adj = adj.to(data.x.device)
# print(adj)
for perm in DataLoader(range(pos_train_edge.size(0)), args.batch_size,
shuffle=True):
optimizer.zero_grad()
h = model(data.x, adj)
edge = pos_train_edge[perm].t()
pos_out = predictor(h, edge)
loss = model.loss()
pos_loss = -torch.log(pos_out + 1e-15).mean()
edge = torch.randint(0, data.x.shape[0], edge.size(), dtype=torch.long,
device=data.x.device)
neg_out = predictor(h, edge)
neg_loss = -torch.log(1 - neg_out + 1e-15).mean()
#
loss = pos_loss + neg_loss + loss
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(predictor.parameters(), 1.0)
optimizer.step()
num_examples = pos_out.size(0)
total_loss += loss.item() * num_examples
total_examples += num_examples
return total_loss / total_examples
@torch.no_grad()
def test(model, predictor, data, pos_test_edge, neg_test_edge, batch_size):
model.eval()
predictor.eval()
h = model(data.x, data.full_adj_t)
pos_test_edge = pos_test_edge.to(data.x.device)
neg_test_edge = neg_test_edge.to(data.x.device)
pos_test_preds = []
for perm in DataLoader(range(pos_test_edge.size(0)), batch_size):
edge = pos_test_edge[perm].t()
pos_test_preds += [predictor(h, edge).squeeze().cpu()]
pos_test_pred = torch.cat(pos_test_preds, dim=0)
neg_test_preds = []
for perm in DataLoader(range(neg_test_edge.size(0)), batch_size):
edge = neg_test_edge[perm].t()
neg_test_preds += [predictor(h, edge).squeeze().cpu()]
neg_test_pred = torch.cat(neg_test_preds, dim=0)
test_pred = torch.cat([pos_test_pred, neg_test_pred], dim=0)
test_true = torch.cat([torch.ones_like(pos_test_pred), torch.zeros_like(neg_test_pred)], dim=0)
test_auc = roc_auc_score(test_true, test_pred)
return test_auc
def extract_feature_list_layer2(feature_list):
xx_list = []
xx_list.append(feature_list[-1])
tmp_feat = torch.cat(feature_list, dim=-1)
xx_list.append(tmp_feat)
return xx_list
def accuracy(preds, labels):
correct = (preds == labels).astype(float)
correct = correct.sum()
return correct / len(labels)
def test_classify(feature, labels, args):
f1_mac = []
f1_mic = []
accs = []
kf = KFold(n_splits=5, random_state=42, shuffle=True)
for train_index, test_index in kf.split(feature):
train_X, train_y = feature[train_index], labels[train_index]
test_X, test_y = feature[test_index], labels[test_index]
clf = svm.SVC(kernel='rbf', decision_function_shape='ovo')
clf.fit(train_X, train_y)
preds = clf.predict(test_X)
micro = f1_score(test_y, preds, average='micro')
macro = f1_score(test_y, preds, average='macro')
acc = accuracy(preds, test_y)
accs.append(acc)
f1_mac.append(macro)
f1_mic.append(micro)
f1_mic = np.array(f1_mic)
f1_mac = np.array(f1_mac)
accs = np.array(accs)
f1_mic = np.mean(f1_mic)
f1_mac = np.mean(f1_mac)
accs = np.mean(accs)
return f1_mic, f1_mac, accs
def main():
parser = argparse.ArgumentParser(description='HCGAE-GAE (GNN)')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--log_steps', type=int, default=1)
parser.add_argument('--use_sage', type=str, default='HCGAE')
parser.add_argument('--dataset', type=str, default='Cora')
parser.add_argument('--use_valedges_as_input', type=bool, default=False)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--decode_layers', type=int, default=3)
parser.add_argument('--hidden_channels', type=int, default=32)
parser.add_argument('--decode_channels', type=int, default=64)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--eval_steps', type=int, default=1)
parser.add_argument('--runs', type=int, default=3)
parser.add_argument('--mask_type', type=str, default='dm',
help='dm | um') # whether to use mask features
parser.add_argument('--patience', type=int, default=50,
help='Use attribute or not')
parser.add_argument('--mask_ratio', type=float, default=0.5)
args = parser.parse_args()
print(args)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
path = osp.join('dataset/class')
# edge_index = data.edge_index
if args.dataset in {'Cora', 'Citeseer'}:
dataset = Planetoid(path, args.dataset)
data = dataset[0]
else:
raise ValueError(args.dataset)
if data.is_undirected():
edge_index = data.edge_index
else:
print('### Input graph {} is directed'.format(args.dataset))
edge_index = to_undirected(data.edge_index)
data.full_adj_t = SparseTensor.from_edge_index(edge_index).t()
data.full_adj_t = data.full_adj_t.to_dense()
edge_index, test_edge, test_edge_neg = do_edge_split_nc(edge_index, data.x.shape[0])
labels = data.y.view(-1)
save_path_model = 'weight/svm-' + args.use_sage + '_{}_{}'.format(args.dataset, args.mask_type) + '_{}'.format(
args.num_layers) + '_hidd{}-{}-{}-{}'.format(args.hidden_channels, args.mask_ratio, args.decode_layers,
args.decode_channels) + '_model.pth'
save_path_predictor = 'weight/svm-' + args.use_sage + '_{}_{}'.format(args.dataset,
args.mask_type) + '_{}'.format(
args.num_layers) + '_hidd{}-{}-{}-{}'.format(args.hidden_channels, args.mask_ratio, args.decode_layers,
args.decode_channels) + '_pred.pth'
out2_dict = {0: 'last', 1: 'combine'}
result_dict = out2_dict
svm_result_final = np.zeros(shape=[args.runs, len(out2_dict)])
data = data.to(device)
if args.use_sage == "HCGAE":
model = HCGAE(
max_num_nodes=data.x.shape[0], input_dim=data.num_features , first_dim=args.hidden_channels,
hidden_dim=int(args.hidden_channels*0.25), embedding_dim=int(args.hidden_channels*0.125),
assign_ratio=0.25, assign_num_layers=-1, num_pooling=3,
pred_hidden_dims=[], concat=False, bn=True, dropout=0.0, linkpred=True,
assign_input_dim=-1, args=args
)
predictor = LPDecoder(args.hidden_channels, args.decode_channels, 1, args.num_layers,
args.decode_layers, args.dropout).to(device)
print('Start training with mask ratio={} # optimization edges={} / {}'.format(args.mask_ratio,
int(args.mask_ratio *
edge_index.shape[0]), edge_index.shape[0]))
for run in range(args.runs):
# model.reset_parameters()
predictor.reset_parameters()
optimizer = torch.optim.Adam(
list(model.parameters()) + list(predictor.parameters()),
lr=args.lr)
best_valid = 0.0
best_epoch = 0
cnt_wait = 0
for epoch in range(1, 1 + args.epochs):
t1 = time.time()
loss = train(model, predictor, data, edge_index, optimizer,
args)
t2 = time.time()
auc_test = test(model, predictor, data, test_edge, test_edge_neg,
args.batch_size)
if auc_test > best_valid:
best_valid = auc_test
best_epoch = epoch
torch.save(model.state_dict(), save_path_model)
torch.save(predictor.state_dict(), save_path_predictor)
cnt_wait = 0
else:
cnt_wait += 1
print(f'Run: {run + 1:02d}, '
f'Epoch: {epoch:02d}, '
f'Best_epoch: {best_epoch:02d}, '
f'Best_valid: {100 * best_valid:.2f}%, '
f'Loss: {loss:.4f}, ')
print('***************')
if cnt_wait == 50:
print('Early stop at {}'.format(epoch))
break
print('##### Testing on {}/{}'.format(run, args.runs))
model.load_state_dict(torch.load(save_path_model))
predictor.load_state_dict(torch.load(save_path_predictor))
feature = model(data.x, data.full_adj_t)
feature = [feature_.detach() for feature_ in feature]
feature_list = extract_feature_list_layer2(feature)
for i, feature_tmp in enumerate(feature_list):
f1_mic_svm, f1_mac_svm, acc_svm = test_classify(feature_tmp.data.cpu().numpy(), labels.data.cpu().numpy(),
args)
svm_result_final[run, i] = acc_svm
svm_result_final = np.array(svm_result_final)
if osp.exists(save_path_model):
os.remove(save_path_model)
os.remove(save_path_predictor)
print('Successfully delete the saved models')
print('\n------- Print final result for SVM')
temp_resullt = svm_result_final[:, 1]
print('#### Final svm test result on {} is mean={} std={}'.format(result_dict[1], np.mean(temp_resullt),
np.std(temp_resullt)))
if __name__ == "__main__":
print("Noded Classification")
main()