-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_mia_dataset.py
325 lines (315 loc) · 17.3 KB
/
create_mia_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import pdb
from tqdm import tqdm
import torch
import random
import numpy as np
from transformers import AutoTokenizer
from datasets import DatasetDict, Dataset, load_dataset, concatenate_datasets, load_from_disk
import argparse
from dolma_sample_load import MemmapTokenDataset, collate_fn
from torch.utils.data import DataLoader
import gc
import torch
from torch.nn.utils.rnn import pad_sequence
import time
import pickle
#
def filter_data(data, min_length, max_length, args, domain):
"""批量过滤文本长度在给定Token数量范围的数据"""
filtered_data = []
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if domain == "code_search_net":
key = "func_code_tokens"
elif domain in ["algebraic-stack", "open-web-math", "arxiv"]:
key = "text"
for i in tqdm(range(0, len(data), args.batch_size)):
batch_start_time = time.perf_counter()
t0 = time.perf_counter()
batch = [x[key] for x in data[i:i + args.batch_size]]
batch_read_time = time.perf_counter() - t0
t2 = time.perf_counter()
if domain == "code_search_net":
# Here items are assumed to be token lists so we just count their length.
lengths = [len(item) for item in batch]
else:
# Tokenize each string once; we save the result so that we do splitting only one time per item.
tokenized_batch = [text.split() for text in batch]
lengths = [len(tokens) for tokens in tokenized_batch]
batch_length_time = time.perf_counter() - t2
#pdb.set_trace()
t4 = time.perf_counter()
lengths = torch.tensor(lengths, device=device)
if args.select_method == "untruncated":
# Retain items only if their token count is in the desired range.
indicator = (lengths >= min_length) & (lengths <= max_length)
if domain == "code_search_net":
filtered_data.extend(
[item for item, l in zip(batch, indicator) if l == True]
)
else:
filtered_data.extend(
[" ".join(tokens) for tokens, l in zip(tokenized_batch, indicator)
if l == True]
)
elif args.select_method == "truncated" and args.relative_length == "False":
# Here we drop items that do not reach the minimum length.
indicator = lengths >= min_length
if domain == "code_search_net":
filtered_data.extend(
[" ".join(item[:max_length]) for item, l in zip(batch, indicator) if l == True]
)
else:
filtered_data.extend(
[" ".join(tokens[:max_length]) for tokens, l in zip(tokenized_batch, indicator) if l == True]
)
# Remove or delay gc.collect() if not strictly necessary.
batch_filtering_time = time.perf_counter() - t4
batch_total_time = time.perf_counter() - batch_start_time
print(" 数据读取耗时: {:.6f} 秒".format(batch_read_time))
print(" Token长度计算耗时: {:.6f} 秒".format(batch_length_time))
print(" 数据过滤处理耗时: {:.6f} 秒".format(batch_filtering_time))
print(" 当前batch总耗时: {:.6f} 秒".format(batch_total_time))
print("-" * 40)
return filtered_data
def load_and_filter_data(dataset, min_length, max_length, args, domain):
"""filtering and load"""
merged_data = []
filtered_data = filter_data(dataset, min_length, max_length, args, domain)
merged_data.extend(filtered_data)
if len(merged_data) > args.sample_size:
return random.sample(merged_data, args.sample_size)
return merged_data
def load_and_filter_npy_data(dataset, args):
"""filtering and load"""
merged_data = []
dataloader = DataLoader(
dataset=dataset,
batch_size=1,
shuffle=False,
num_workers=0,
collate_fn=collate_fn
)
for step, batch_token_ids in enumerate(dataloader):
text = tokenizer.decode(batch_token_ids[0].tolist(), skip_special_tokens=True)
merged_data.append(text)
if step % 1000 == 0:
print(f"Processed {step} samples")
if step == 50000:
break
if len(merged_data) > args.sample_size:
return random.sample(merged_data, args.sample_size)
return merged_data
def load_text_dataset(filename, directory="saved_datasets"):
file_path = os.path.join(directory, f"{filename}.pt")
text_dataset = torch.load(file_path)
print(f"Loaded dataset from {file_path}")
return text_dataset
parser = argparse.ArgumentParser()
parser.add_argument("--list", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--sample_size", type=int, default=1000)
parser.add_argument("--select_method", type=str, default="truncated", choices=["truncated", "untruncated"])
parser.add_argument("--relative_length", type=str, default="False")
parser.add_argument("--domain", type=str, default="arxiv")
parser.add_argument("--device", type=str, default="beyondai")
parser.add_argument("--dataset_idx", type=int, default=1)
args = parser.parse_args()
if args.device == "wisteria":
prefix = "."
elif args.device == "chomusuke1":
prefix = "/NAS/Personal/bwchen/Dolmad_ata"
elif args.device == "chomusuke2":
prefix = "/store/bwchen"
elif args.device == "beyondai":
prefix = "/store/Dolma"
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-2-1124-13B")
#seed_list = [[0, 10345], [1, 19238], [2, 19093]]
if args.dataset_idx == 1:
seed_list = [[0, 10345]]
elif args.dataset_idx == 2:
seed_list = [[1, 19238]]
elif args.dataset_idx == 3:
seed_list = [[2, 19093]]
#data_list = ["code search net", "dolma wiki", "dolma stack", "m2d2", "arxiv", "open-web-math", "algebraic-stack"]
data_list = ["arxiv"]
length_list = [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, "rest"]
enumerate_length = len(length_list)
sample_num = 200000
for x in seed_list:
seed = x[1]
idx = x[0]
random.seed(seed)
if args.domain == "code_search_net":
dataset = load_dataset("code-search-net/code_search_net")
member_dataset = dataset["train"]
valid_dataset = dataset["validation"]
test_dataset = dataset["test"]
non_member_dataset = concatenate_datasets([valid_dataset, test_dataset])
if os.path.exists(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl"):
# member_dataset = load_from_disk(
# f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}",
# keep_in_memory=True
# )
member_dataset = pickle.load(open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl", "rb"))
non_member_dataset = pickle.load(open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_valid.pkl", "rb"))
else:
random_indices = random.sample(range(len(member_dataset)),
k=sample_num if sample_num < len(member_dataset) else len(
member_dataset))
member_dataset = list(member_dataset.select(random_indices))
non_member_dataset = list(non_member_dataset)
os.makedirs(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}",
exist_ok=True)
pickle.dump(member_dataset, open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl", "wb"))
pickle.dump(non_member_dataset, open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_valid.pkl", "wb"))
#dump pickle member dataset
# merge valid and test
elif args.domain == "dolma wiki":
member_dataset_path = "data_OLMo2_13b_1124/train_data/raw_data/wiki_train.npy"
non_member_dataset_path = "data_OLMo2_13b_1124/eval_data/raw_data/wiki_valid.npy"
elif args.domain == "dolma pes2o":
member_dataset_path = "data_OLMo2_13b_1124/train_data/raw_data/pes2o_train.npy"
non_member_dataset_path = "data_OLMo2_13b_1124/eval_data/raw_data/pes2o_valid.npy"
elif args.domain == "algebraic-stack":
if args.device == "wisteria":
dataset = load_dataset("EleutherAI/proof-pile-2", "algebraic-stack")
else:
dataset = load_dataset("EleutherAI/proof-pile-2", "algebraic-stack", cache_dir=f"{prefix}")
member_dataset = dataset["train"]
valid_dataset = dataset["validation"]
test_dataset = dataset["test"]
non_member_dataset = concatenate_datasets([valid_dataset, test_dataset])
if os.path.exists(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl"):
#member_dataset = load_from_disk(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}")
member_dataset = pickle.load(
open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl",
"rb"))
non_member_dataset = pickle.load(
open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_valid.pkl",
"rb"))
else:
random_indices = random.sample(range(len(member_dataset)),
k=sample_num if sample_num < len(member_dataset) else len(
member_dataset))
member_dataset = list(member_dataset.select(random_indices))
non_member_dataset = list(non_member_dataset)
os.makedirs(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}",
exist_ok=True)
pickle.dump(member_dataset, open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl", "wb"))
pickle.dump(non_member_dataset, open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_valid.pkl", "wb"))
# random_indices = random.sample(range(len(member_dataset)),
# k=sample_num if sample_num < len(member_dataset) else len(
# member_dataset))
# member_dataset = member_dataset.select(random_indices)
# os.makedirs(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}", exist_ok=True)
# member_dataset.save_to_disk(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}")
# member_dataset = load_from_disk(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}")
#merge valid and test
#validation_sampled = valid_dataset
#test_sampled = test_dataset
elif args.domain == "arxiv":
if args.device == "wisteria":
dataset = load_dataset("EleutherAI/proof-pile-2", "arxiv")
else:
dataset = load_dataset("EleutherAI/proof-pile-2", "arxiv", cache_dir=f"{prefix}", trust_remote_code=True)
member_dataset = dataset["train"]
valid_dataset = dataset["validation"]
test_dataset = dataset["test"]
non_member_dataset = concatenate_datasets([valid_dataset, test_dataset])
if os.path.exists(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl"):
# member_dataset = load_from_disk(
# f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}",
# keep_in_memory=True)
member_dataset = pickle.load(
open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl",
"rb"))
non_member_dataset = pickle.load(
open(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_valid.pkl",
"rb"))
else:
# random_indices = random.sample(range(len(member_dataset)),
# k=sample_num if sample_num < len(member_dataset) else len(
# member_dataset))
# member_dataset = member_dataset.select(random_indices)
# os.makedirs(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}",
# exist_ok=True)
# member_dataset.save_to_disk(
# f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}")
# member_dataset = load_from_disk(
# f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}")
random_indices = random.sample(range(len(member_dataset)),
k=sample_num if sample_num < len(member_dataset) else len(
member_dataset))
member_dataset = list(member_dataset.select(random_indices))
non_member_dataset = list(non_member_dataset)
os.makedirs(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}",
exist_ok=True)
pickle.dump(member_dataset, open(
f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_train.pkl", "wb"))
pickle.dump(non_member_dataset, open(
f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}_valid.pkl", "wb"))
# merge valid and test
#pdb.set_trace()
# del dataset
# validation_sampled = valid_dataset
# test_sampled = test_dataset
# non_member_dataset = concatenate_datasets([validation_sampled, test_sampled])
elif args.domain == "open-web-math":
if args.device == "wisteria":
dataset = load_dataset("EleutherAI/proof-pile-2", "open-web-math")
else:
dataset = load_dataset("EleutherAI/proof-pile-2", "open-web-math", cache_dir=f"{prefix}")
member_dataset = dataset["train"]
valid_dataset = dataset["validation"]
test_dataset = dataset["test"]
if os.path.exists(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}"):
member_dataset = load_from_disk(
f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}")
else:
random_indices = random.sample(range(len(member_dataset)),
k=sample_num if sample_num < len(member_dataset) else len(
member_dataset))
member_dataset = member_dataset.select(random_indices)
os.makedirs(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}",
exist_ok=True)
member_dataset.save_to_disk(
f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}")
member_dataset = load_from_disk(
f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{args.domain}/raw_data/{seed}")
# merge valid and test
validation_sampled = valid_dataset
test_sampled = test_dataset
non_member_dataset = concatenate_datasets([validation_sampled, test_sampled])
for i in range(enumerate_length):
print (f"Processing {args.domain} with length {length_list[i]}")
if length_list[i] == 0:
min_length = 5
max_length = length_list[i + 1]
elif length_list[i] == "rest":
continue
else:
min_length = length_list[i]
max_length = min_length + 100
if args.domain in ["dolma wiki", "dolma pes2o"]:
member_dataset = MemmapTokenDataset(member_dataset_path, seq_len=max_length, dtype="uint32")
non_member_dataset = MemmapTokenDataset(non_member_dataset_path, seq_len=max_length, dtype="uint32")
filtered_member_data = load_and_filter_npy_data(member_dataset, args)
filtered_nonmember_data = load_and_filter_npy_data(non_member_dataset, args)
else:
filtered_member_data = load_and_filter_data(member_dataset, min_length, max_length, args, args.domain)
filtered_nonmember_data = load_and_filter_data(non_member_dataset, min_length, max_length, args, args.domain)
member_data = []
nonmember_data = []
member_data.extend(filtered_member_data)
nonmember_data.extend(filtered_nonmember_data)
train_dataset = Dataset.from_dict({"data": member_data})
test_dataset_short = Dataset.from_dict({"data": nonmember_data})
dataset = DatasetDict({
'member': train_dataset,
'nonmember': test_dataset_short,
})
os.makedirs(f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{min_length}_{max_length}_{args.select_method}/{args.domain}",
exist_ok=True)
dataset.save_to_disk(
f"{prefix}/dolma_absolute_filtered_dataset_{idx + 1}/{min_length}_{max_length}_{args.select_method}/{args.domain}")