-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathviz.py
176 lines (141 loc) · 4.63 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from bokeh.plotting import *
from bokeh.objects import HoverTool, ColumnDataSource
from bokeh.sampledata.les_mis import data
import pandas as pd
from datetime import datetime
from collections import OrderedDict
import scipy.cluster.hierarchy as sch
import seaborn as sns
import numpy as np
from IPython.html import widgets
class HDFSource(object):
"""docstring for HD"""
def __init__(self, filename):
super(HDFSource, self).__init__()
self.filename = filename
def select(self, name, *args):
with pd.get_store(self.filename) as store:
return store.select(name, *args)
def select_column(self, obj, column):
with pd.get_store(self.filename) as store:
return store.select_column(obj, column)
class StocksSource(HDFSource):
"""docstring for StocksSource"""
def __init__(self, filename, object_name):
super(StocksSource, self).__init__(filename)
self.filename = filename
self.object_name = object_name
def x(self):
pass
class CorrelationMatrixSource(HDFSource):
"""docstring for CorrelationMatrixSource"""
def __init__(self, filename, object_name):
super(CorrelationMatrixSource, self).__init__(filename)
self.name = object_name
def get_interval(self, t0, t1):
t1 = t1 or t0
return self.select( self.name,
[pd.Term('major_axis', '>=', pd.Timestamp(t0)),
pd.Term('major_axis', '<=', pd.Timestamp(t1))] )
def get_at(self, t, square=True):
df = self.select(self.name, self.get_equal_time_term(t))
if square:
df = self.make_square(df)
return df
def iterate_time(self, start=None, end=None, square=True):
time_axis = self.time_axis(start=start, end=end)
time_axis = sorted( time_axis)
for t in time_axis:
df = self.get_at(t, square=square) #.to_frame() #.reset_index(0, drop=True)
# if square: df = self.make_square(df)
yield t, df
def entities(self):
return self.select_column(self.name, 'minor_axis')
def time_axis(self, start=None, end=None):
t = self.select_column(self.name, 'major_axis')
if start:
t = t[ t >= start ]
if end:
t = t[ t <= end ]
return t.unique()
@classmethod
def get_equal_time_term(self, t):
return pd.Term( 'major_axis', '==', pd.Timestamp(t))
@classmethod
def make_square(self, df):
df2 = df.iloc[:, 0, :]
return df2[df2.index.tolist()]
class MatrixPlotter(object):
"""docstring for MatrixPlotter"""
def __init__(self, source):
super(MatrixPlotter, self).__init__()
self.number_colors = 21
self.source = source
self.column_source = None
self.plot = None
self.palette = None
self._init_palette()
def corrplot(self, entities):
figure()
rect('xname', 'yname', 0.9, 0.9, source=self.column_source,
x_range=entities, y_range=list(reversed(entities)),
color='colors', line_color=None,
tools="resize,hover", title="Correlation matrix",
plot_width=500, plot_height=500)
grid().grid_line_color = None
axis().axis_line_color = None
axis().major_tick_line_color = None
axis().major_label_text_font_size = "7pt"
axis().major_label_standoff = 0
xaxis().location = "top"
xaxis().major_label_orientation = np.pi/3
self.plot = curplot()
# hover = [t for t in curplot().tools if isinstance(t, HoverTool)][0]
hover = [t for t in self.plot.tools if isinstance(t, HoverTool)][0]
hover.tooltips = OrderedDict([
('names', '@yname, @xname'),
('count', '@values')
])
return self
@staticmethod
def reorder_dendogram(df):
Y = sch.linkage(df.values, method='centroid')
Z = sch.dendrogram(Y, orientation='right', no_plot=True)
index = Z['leaves']
return index
def _init_palette(self):
basis = sns.blend_palette(["seagreen", "ghostwhite", "#4168B7"], self.number_colors)
self.palette = ["rgb(%d, %d, %d)" % (r,g,b) for r,g,b, a in np.round(basis * 255)]
def _color(self, value):
i = np.round((value + 1.) * (self.number_colors -1) * 0.5)
return self.palette[int(i)]
def to_data_source(self, df):
index = self.reorder_dendogram(df)
# col = lambda v: self.color(v)
print self._color(0.2)
_names = df.columns.tolist()
names = [_names[i] for i in index]
xnames = []
ynames = []
values = []
colors = []
for n in names:
xnames.extend([n] * len(names))
ynames.extend(names)
v = df.loc[n, names].tolist()
values.extend(values)
colors.extend([ self._color(x) for x in v])
# alphas = np.abs(df.values).flatten()
self.column_source = ColumnDataSource(
data=dict(
xname = xnames,
yname = ynames,
colors= colors,
values= values,
)
)
return self, names
def as_widget(self):
bokeh_widget= widgets.HTMLWidget()
bokeh_widget.value = notebook_div(self.plot)
return bokeh_widget