-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_options.cfg
69 lines (63 loc) · 3.06 KB
/
config_options.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
[GLOBAL]
nn_threads = int{1,no_cores} -> 4
det_threads = int{1,no_cores} -> 8
mode = {detection, classification}
setmode = {becker, voc, graz, caltech}
train_sel = {bbox, segment}
local = Bool -> True
randbg = int{-2,-1,0,..} -> 0 (-1 = proportional to the cls size, -2 = all bg images)
tmp_dir = rel_dir -> /local/vdvelden/sldet1beckerTUD_sift_tmp_...
res_dir = rel_dir -> /local/vdvelden/sldet1beckerTUD_sift_res_...
train_set = available from imset_path below -> tudtrain
val_set = available from imset_path below -> tudbval (behmo-only)
test_set = available from imset_path below -> tudtest
bg_train_set= available from imset_path below -> tudtrain
[VOC]
imset_path = path with imset placeholder -> VOCdevkit/VOC2007/ImageSets/Main/%s.txt
image_path = path with im_id placeholder -> VOCdevkit/VOC2007/JPEGImages/%s.jpg
annotation_path = path with im_id placeholder -> VOCdevkit/VOC2007/Annotations/%s.xml
gt_object_path = path with im_id placeholder -> None
gt_class_path = path with im_id placeholder -> VOCdevkit/VOC2007/SegmentationClass/%s.png
classes = list of classes available in dataset (setmode) -> motorbike
[TRAIN-DESCRIPTOR]
dtype = Descriptor Subclass{DescriptorUint8, Descriptor, RootSIFT, VL_DSift} -> DescriptorUint8
cache_dir = rel_dir in tmp_dir -> descriptors
detector = colorDescriptor detector{densesampling, harrislaplace} -> densesampling
descriptor = colorDescriptor descriptor{sift, csift, opponentsift, rgbsift, rgsift} -> sift (only sift available in VL_DSift)
outputFormat = {binary, text} -> binary (much faster)
/* Optional for densesampling */
[ds_spacing = int{1,..} -> 8]
[ds_scales = float{0,..}[+float{0,..}*] -> 2.67+4.0+5.33]
/* Optional for harrislaplace */
...
[TEST-DESCRIPTOR]
dtype = DescriptorUint8
cache_dir = descriptors
detector = densesampling
descriptor = sift
ds_spacing = 8
ds_scales = 2.67+4.0+5.33
outputFormat = binary
[NBNN]
behmo = {True, False} -> False
checks = int -> 1000
[TEST]
k = int{1,..} -> {1,5,10,20}
batch_size = int{1,..} -> 100
img_pickle_path = rel_path in tmp_dir placeholder for batch no -> batches/%d.pkl
[DETECTION]
method = {single_link, quickshift}
dist = {overlap, euclidean, ..} -> overlap
hyp_threshold = {nearest, ranked} -> nearest
ignore_threshold = {True, False} -> False
hypothesis_metric = {bb_descr_qh, bb_energy, bb_wenergy, bb_fg, bb_bg, bb_qh, bb_uniform} -> bb_descr_qh
detection_metric = {det_becker, det_energy, det_qh, det_qd, det_fg, det_bg} -> det_becker
distances_path = rel_path in tmp_dir with placeholders for class & image -> distances/%s_%s.pkl
hypotheses_path = rel_path in tmp_dir with placeholders for class & image -> hypotheses/%s_%s.pkl
exemplar_path = rel_path in tmp_dir with placeholders for class -> exemplars/%s.npy
/* Optional for single_link */
[theta_m = float{0,1} -> 0.8]
[theta_p = float{0,1} -> 0.4]
/* Optional for quickshift */
[quickshift_tree_path = quickshift/%s_%s.pkl]
[tau = float{1,..} -> 1.118]