forked from hazirbas/poselstm-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
72 lines (64 loc) · 2.56 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import time
import os
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from util import html
import numpy
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
results_dir = os.path.join(opt.results_dir, opt.name)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
besterror = [0, float('inf'), float('inf')] # nepoch, medX, medQ
if opt.model == 'posenet':
testepochs = numpy.arange(450, 500+1, 5)
else:
testepochs = numpy.arange(450, 1200+1, 5)
testfile = open(os.path.join(results_dir, 'test_median.txt'), 'a')
testfile.write('epoch medX medQ\n')
testfile.write('==================\n')
model = create_model(opt)
visualizer = Visualizer(opt)
for testepoch in testepochs:
model.load_network(model.netG, 'G', testepoch)
visualizer.change_log_path(testepoch)
# test
# err_pos = []
# err_ori = []
err = []
print("epoch: "+ str(testepoch))
for i, data in enumerate(dataset):
model.set_input(data)
model.test()
img_path = model.get_image_paths()[0]
print('\t%04d/%04d: process image... %s' % (i, len(dataset), img_path), end='\r')
image_path = img_path.split('/')[-2] + '/' + img_path.split('/')[-1]
pose = model.get_current_pose()
visualizer.save_estimated_pose(image_path, pose)
err_p, err_o = model.get_current_errors()
# err_pos.append(err_p)
# err_ori.append(err_o)
err.append([err_p, err_o])
median_pos = numpy.median(err, axis=0)
if median_pos[0] < besterror[1]:
besterror = [testepoch, median_pos[0], median_pos[1]]
print()
# print("median position: {0:.2f}".format(numpy.median(err_pos)))
# print("median orientat: {0:.2f}".format(numpy.median(err_ori)))
print("\tmedian wrt pos.: {0:.2f}m {1:.2f}°".format(median_pos[0], median_pos[1]))
testfile.write("{0:<5} {1:.2f}m {2:.2f}°\n".format(testepoch,
median_pos[0],
median_pos[1]))
testfile.flush()
print("{0:<5} {1:.2f}m {2:.2f}°\n".format(*besterror))
testfile.write('-----------------\n')
testfile.write("{0:<5} {1:.2f}m {2:.2f}°\n".format(*besterror))
testfile.write('==================\n')
testfile.close()