-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_manual.py
117 lines (99 loc) · 3.38 KB
/
train_manual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import torch
import argparse
from util import DatasetDirectory, ExpandNetLoss
from tqdm import tqdm
from model import RPCA_Net
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'-d',
'--data_path',
default='Training_Samples',
help='Path for training data.',
)
parser.add_argument(
'-s',
'--save_path',
default='checkpoints',
help='Path for checkpointing.',
)
parser.add_argument(
'--resume',
help='Resume training from saved checkpoint(s).',
)
parser.add_argument(
'--checkpoint_freq',
type=int,
default=1,
help='Checkpoint model every x epochs.',
)
parser.add_argument(
'--loss_freq',
type=int,
default=20,
help='Report (average) loss every x iterations.',
)
parser.add_argument(
'--set_lr',
type=float,
default=-1,
help='Set new learning rate.',
)
return parser.parse_args()
def train(opt):
torch.backends.cudnn.benchmark = True
train_path = opt.data_path
data_train = DatasetDirectory(train_path)
data_train_loader = torch.utils.data.DataLoader(data_train, batch_size=1, shuffle=True, num_workers=4)
model = RPCA_Net(N_iter=10)
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=3e-5)
loss = torch.nn.L1Loss()
if opt.resume is not None:
print('Resume training from' + opt.resume)
checkpoint = torch.load(opt.resume)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch_0 = checkpoint['epoch'] + 1
model.train()
else:
print('Start training from scratch.')
epoch_0 = 1
if not opt.set_lr == -1:
for groups in optimizer.param_groups: groups['lr'] = opt.set_lr; break
print('New learning rate:', end=" ")
for groups in optimizer.param_groups: print(groups['lr']); break
if not os.path.exists(opt.save_path):
os.mkdir(opt.save_path)
else:
print('WARNING: save_path already exists. Checkpoints may be overwritten.')
avg_loss = 0
for epoch in tqdm(range(epoch_0, 10_001), desc='Training'):
for i, (ldr_in, omega, hdr_target) in enumerate(tqdm(data_train_loader, desc=f'Epoch {epoch}')):
ldr_in = ldr_in.cuda()
hdr_target = hdr_target.cuda()
omega = omega.cuda()
X_hat, X_hdr = model(ldr_in, omega)
total_loss = loss(X_hat, hdr_target) + loss(X_hdr, hdr_target[0, :, 1, :])
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
avg_loss += total_loss.item()
if ((i + 1) % opt.loss_freq) == 0:
rep = (
f'Epoch: {epoch:>5d}, '
f'Iter: {i+1:>6d}, '
f'Loss: {avg_loss/opt.loss_freq:>6.2e}'
)
tqdm.write(rep)
avg_loss = 0
if (epoch % opt.checkpoint_freq) == 0:
torch.save(
{'epoch': epoch, 'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()},
os.path.join(opt.save_path, f'epoch_{epoch}.pth')
)
if __name__ == '__main__':
opt_args = parse_args()
train(opt_args)