-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
152 lines (119 loc) · 6.19 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
from torch import nn
import numpy as np
class TensorRankBlock(nn.Module):
def __init__(self):
super(TensorRankBlock, self).__init__()
@staticmethod
def PSVT(X, tau, r=1):
X = torch.squeeze(X)
[U, S, V] = torch.svd(X)
V = torch.t(V)
Xd = torch.mm(torch.mm(U[:, 0:r], torch.diag(torch.complex(S[0:r], torch.tensor(0.0).cuda()))), torch.conj(torch.t(torch.t(V)[:, 0:r])))
diagS = nn.functional.relu(S[r:] - tau)
diagS = torch.squeeze(diagS[torch.nonzero(diagS)])
svp = np.prod(list(diagS.shape))
if svp >= 1:
Xd = Xd + torch.mm(torch.mm(U[:, r:r + svp], torch.diag(diagS)), torch.conj(torch.t(torch.t(V)[:, r:r + svp])))
Xd = torch.unsqueeze(Xd, 0)
return Xd
def forward(self, x, tau):
# calculate Psi_hat along the third dimension
x = x.permute(0, 3, 2, 1) # to channel last
x_fft = torch.fft.fft(torch.squeeze(x), dim=2)
# calculate solutions for three frontal slices of X_hat (Eq. 20)
# using PSVT operator (Eq. 19)
t_fft = torch.zeros(x_fft.shape, dtype=x_fft.dtype).cuda()
t_fft[:, :, 0] = self.PSVT(x_fft[:, :, 0], tau)
t_fft[:, :, 1] = self.PSVT(x_fft[:, :, 1], tau)
t_fft[:, :, 2] = self.PSVT(x_fft[:, :, 2], tau)
# inverse FFT of X_hat to create X (Eq. 21)
t_ifft = torch.unsqueeze(torch.fft.irfft(t_fft, n=3, dim=2), 0)
t_ifft = t_ifft.permute(0, 3, 2, 1) # to channel first for CNN
return t_ifft
class ProximalBlock(nn.Module):
def __init__(self):
super(ProximalBlock, self).__init__()
# This network structure is illustrated in Fig. 3
self.proximal = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False),
nn.Conv2d(in_channels=128, out_channels=3, kernel_size=3, stride=1, padding=1, bias=False),
)
def forward(self, x):
output = self.proximal(x)
return output
class RPCA_Block(nn.Module):
def __init__(self):
super(RPCA_Block, self).__init__()
self.Proximal_X = TensorRankBlock() # solution for PSTNN (Eq. 17-21)
self.Proximal_P = ProximalBlock() # proximal operator V_k (Eq. 28)
self.Proximal_Q = ProximalBlock() # proximal operator W_k (Eq. 29)
self.lamb = torch.nn.Parameter(torch.tensor(1e-6, dtype=torch.float32), requires_grad=True).cuda()
self.delta = torch.nn.Parameter(torch.tensor(1e-6, dtype=torch.float32), requires_grad=True).cuda()
self.mu = torch.nn.Parameter(torch.tensor(1e-3, dtype=torch.float32), requires_grad=True).cuda()
self.alpha = torch.nn.Parameter(torch.tensor(1e-3, dtype=torch.float32), requires_grad=True).cuda()
self.beta = torch.nn.Parameter(torch.tensor(1e-3, dtype=torch.float32), requires_grad=True).cuda()
def forward(self, X, L1, L2, L3, E, S, P, Q, Omega):
# update X (Eq. 20-21)
psi_x = self.mu + self.alpha
Psi_X = (L1 - L2 + self.mu * Omega - self.mu * E - self.mu * S + self.alpha * P) / psi_x
X_k = self.Proximal_X(Psi_X, torch.tensor(1.).cuda() / psi_x)
# update E (Eq. 23)
psi_e = self.mu + self.beta
Psi_E = (L1 - L3 + self.mu * Omega - self.mu * X_k - self.mu * S + self.beta * Q) / psi_e
E_k = torch.mul(torch.sign(Psi_E), nn.functional.relu(torch.abs(Psi_E) - self.lamb / psi_e))
# update S (Eq. 25)
# S is T in the paper, S is legacy name
# mysterious errors might happen, so I leave it be
Y = Omega - X_k - E_k + L1 / self.mu
S_k = torch.mul(Y, torch.tensor(1.).cuda() - Omega) + \
torch.mul(Y, Omega) * torch.min(torch.tensor(1.).cuda(), self.delta / (torch.norm(torch.mul(Y, Omega), 'fro') + 1e-6))
# update P (Eq. 28)
# V_k is self.Proximal_P
P_k = self.Proximal_P(X_k + L2 / (self.alpha + 1e-6))
# update Q (Eq. 29)
# W_k is self.Proximal_Q
Q_k = self.Proximal_Q(E_k + L3 / (self.beta + 1e-6))
# update Lagrange multipliers (Eq. 30)
L1_k = L1 + self.mu * (Omega - X_k - E_k - S_k)
L2_k = L2 + self.alpha * (X_k - P_k)
L3_k = L3 + self.beta * (E_k - Q_k)
return X_k, L1_k, L2_k, L3_k, E_k, S_k, P_k, Q_k
class RPCA_Net(nn.Module):
def __init__(self, N_iter):
super(RPCA_Net, self).__init__()
self.N_iter = N_iter
blocks_list = []
for i in range(self.N_iter):
blocks_list.append(RPCA_Block())
self.network = nn.ModuleList(blocks_list)
self.composer = nn.Conv2d(3, 1, kernel_size=1, stride=1, bias=False)
def forward(self, image, Omega):
OmegaD = torch.mul(image, Omega)
X = OmegaD
L1 = torch.zeros(OmegaD.size()).cuda()
L2 = torch.zeros(OmegaD.size()).cuda()
L3 = torch.zeros(OmegaD.size()).cuda()
E = torch.zeros(OmegaD.size()).cuda()
S = torch.zeros(OmegaD.size()).cuda()
P = torch.zeros(OmegaD.size()).cuda()
Q = torch.zeros(OmegaD.size()).cuda()
layers = []
for i in range(0, self.N_iter):
[X, L1, L2, L3, E, S, P, Q] = self.network[i](X, L1, L2, L3, E, S, P, Q, OmegaD)
layers.append(torch.stack([X, L1, L2, L3, E, S, P, Q]))
X_hat = layers[-1][0]
X_hdr = self.composer(X_hat.permute(0, 2, 1, 3))
X_hdr = torch.squeeze(X_hdr)
return X_hat, X_hdr