-
Notifications
You must be signed in to change notification settings - Fork 177
/
Copy pathmountain_car.py
150 lines (134 loc) · 6.23 KB
/
mountain_car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python
# MIT License
# Copyright (c) 2017 Massimiliano Patacchiola
# https://mpatacchiola.github.io/blog/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Implentation of the Mountain Car problem using the notation of the book:
# 'Statistical Reinforcement Learning' by Masashi Sugiyama
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
class MountainCar:
def __init__(self, mass=0.2, friction=0.3, delta_t=0.1):
""" Create a new mountain car object.
It is possible to pass the parameter of the simulation.
@param mass: the mass of the car (default 0.2)
@param friction: the friction in Newton (default 0.3)
@param delta_t: the time step in seconds (default 0.1)
"""
self.position_list = list()
self.gravity = 9.8
self.friction = friction
self.delta_t = delta_t # second
self.mass = mass # the mass of the car
self.position_t = -0.5
self.velocity_t = 0.0
def reset(self, exploring_starts=True, initial_position=-0.5):
""" It reset the car to an initial position [-1.2, 0.5]
@param exploring_starts: if True a random position is taken
@param initial_position: the initial position of the car (requires exploring_starts=False)
@return: it returns the initial position of the car and the velocity
"""
if exploring_starts:
initial_position = np.random.uniform(-1.2,0.5)
if initial_position < -1.2:
initial_position = -1.2
if initial_position > 0.5:
initial_position = 0.5
self.position_list = [] # clear the list
self.position_t = initial_position
self.velocity_t = 0.0
self.position_list.append(initial_position)
return [self.position_t, self.velocity_t]
def step(self, action):
"""Perform one step in the environment following the action.
@param action: an integer representing one of three actions [0, 1, 2]
where 0=move_left, 1=do_not_move, 2=move_right
@return: (postion_t1, velocity_t1), reward, done
where reward is always negative but when the goal is reached
done is True when the goal is reached
"""
if(action >= 3):
raise ValueError("[MOUNTAIN CAR][ERROR] The action value "
+ str(action) + " is out of range.")
done = False
reward = -0.01
action_list = [-0.2, 0, +0.2]
action_t = action_list[action]
velocity_t1 = self.velocity_t + \
(-self.gravity * self.mass * np.cos(3*self.position_t)
+ (action_t/self.mass)
- (self.friction*self.velocity_t)) * self.delta_t
position_t1 = self.position_t + (velocity_t1 * self.delta_t)
# Check the limit condition (car outside frame)
if position_t1 < -1.2:
position_t1 = -1.2
velocity_t1 = 0
# Assign the new position and velocity
self.position_t = position_t1
self.velocity_t= velocity_t1
self.position_list.append(position_t1)
# Reward and done when the car reaches the goal
if position_t1 >= 0.5:
reward = +1.0
done = True
# Return state_t1, reward, done
return [position_t1, velocity_t1], reward, done
def render(self, file_path='./mountain_car.mp4', mode='mp4'):
""" When the method is called it saves an animation
of what happened until that point in the episode.
Ideally it should be called at the end of the episode,
and every k episodes.
ATTENTION: It requires avconv and/or imagemagick installed.
@param file_path: the name and path of the video file
@param mode: the file can be saved as 'gif' or 'mp4'
"""
# Plot init
fig = plt.figure()
ax = fig.add_subplot(111, autoscale_on=False, xlim=(-1.2, 0.5), ylim=(-1.1, 1.1))
ax.grid(False) # disable the grid
x_sin = np.linspace(start=-1.2, stop=0.5, num=100)
y_sin = np.sin(3 * x_sin)
# plt.plot(x, y)
ax.plot(x_sin, y_sin) # plot the sine wave
# line, _ = ax.plot(x, y, 'o-', lw=2)
dot, = ax.plot([], [], 'ro')
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)
_position_list = self.position_list
_delta_t = self.delta_t
def _init():
dot.set_data([], [])
time_text.set_text('')
return dot, time_text
def _animate(i):
x = _position_list[i]
y = np.sin(3 * x)
dot.set_data(x, y)
time_text.set_text("Time: " + str(np.round(i*_delta_t, 1)) + "s" + '\n' + "Frame: " + str(i))
return dot, time_text
ani = animation.FuncAnimation(fig, _animate, np.arange(1, len(self.position_list)),
blit=True, init_func=_init, repeat=False)
if mode == 'gif':
ani.save(file_path, writer='imagemagick', fps=int(1/self.delta_t))
elif mode == 'mp4':
ani.save(file_path, fps=int(1/self.delta_t), writer='avconv', codec='libx264')
# Clear the figure
fig.clear()
plt.close(fig)