-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.json
executable file
·104 lines (104 loc) · 4.14 KB
/
config.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
{
"id": "20fb032f-7a5b-4a2b-9ab8-367ee53030ea",
"meta": {
"name": "deepscan-brats",
"application_area": "Medical Imaging, Segmentation",
"task": "Brain Tumor Segmentation",
"task_extended": "Brain tumor segmentation for the BraTS 18 challenge",
"data_type": "Nifti-1 volumes",
"data_source": "http://braintumorsegmentation.org/"
},
"publication": {
"title": "Ensembles of Densely-Connected CNNs with Label-Uncertainty for Brain Tumor Segmentation",
"source": "International MICCAI Brainlesion Workshop",
"year": 2018,
"authors": "Richard McKinley, Raphael Meier, Roland Wiest",
"email": "[email protected]",
"abstract": "We introduce a new family of classifiers based on our previous DeepSCAN architecture, in which densely connected blocks of dilated convolutions are embedded in a shallow U-net-style structure of down/upsampling and skip connections. These networks are trained using a newly designed loss function which models label noise and uncertainty. We present results on the testing dataset of the Multimodal Brain Tumor Segmentation Challenge 2018.",
"url": "https://link.springer.com/chapter/10.1007/978-3-030-11726-9_40",
"google_scholar": "https://scholar.google.com/scholar?cites=9977684363503558221&as_sdt=2005&sciodt=0,5&hl=en",
"bibtex": "@inproceedings{mckinley2018ensembles,title={Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation},author={McKinley, Richard and Meier, Raphael and Wiest, Roland},booktitle={International MICCAI Brainlesion Workshop},pages={456--465},year={2018},organization={Springer}}"
},
"model": {
"description": "Densely-Connected CNNs",
"provenance": "",
"architecture": "CNN",
"learning_type": "Supervised",
"format": ".pth.tar",
"io": {
"input": {
"format": ["application/json"],
"t1": {
"format" : ["application/nii-gzip"],
"dim_limits": [{
"min": 155,
"max": 240
},
{
"min": 155,
"max": 240
},
{
"min": 155,
"max": 240
}
]
},
"t1c": {
"format" : ["application/nii-gzip"],
"dim_limits": [{
"min": 155,
"max": 240
},
{
"min": 155,
"max": 240
},
{
"min": 155,
"max": 240
}
]
},
"t2": {
"format" : ["application/nii-gzip"],
"dim_limits": [{
"min": 155,
"max": 240
},
{
"min": 155,
"max": 240
},
{
"min": 155,
"max": 240
}
]
},
"flair": {
"format" : ["application/nii-gzip"],
"dim_limits": [{
"min": 155,
"max": 240
},
{
"min": 155,
"max": 240
},
{
"min": 155,
"max": 240
}
]
}
},
"output": [{
"name": "Segmentation",
"type": "image",
"description": "Numpy array of shape (240,240,155) with labels. Needs header from one of the input images to save to file."
}]
}
},
"modelhub": {}
}